Elastase, a serine proteinase released by activated human neutrophils, can degrade a wide variety of biomacromolecules including elastin, and is considered a marker of inflammatory diseases. As the logical strategy to protect tissue is to inhibit excessive elastase activity, experimental and clinical researches have concentrated on trying to find efficient elastase inhibitors. As thymol, one of the major components of thyme oil with a phenolic structure, has been credited with a series of pharmacological properties, that include antimicrobial and antioxidant effects, the aim of this study was to explore whether it can also interfere with the release of elastase by human neutrophils stimulated with the synthetic chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP). After the neutrophils were incubated with increasing amounts of thymol (2.5, 5, 10, 20 µg/ml), elastase release was initiated by fMLP and measured using MeO-Suc-Ala-Ala-Pro-Val-MCA. The results showed that thymol inhibited fMLP-induced elastase release in a concentration-dependent manner, with the effects of 10 and 20 µg/ml being statistically significant. The behavior of cytosolic calcium mobilization revealed by fura-2 closely resembled that of elastase, thus suggesting that they may be related. The hydrophobic nature of thymol means that it can approach ion channel proteins through the lipid phase of the membrane, alter the local environment of calcium channels and thus inhibit capacitative calcium entry. In brief, thymol inactivates calcium channels machinery, thus triggering a corresponding reduction in elastase. The antibacterial and antimycotic activity of thymol is already well known, but our findings that it inhibits elastase extend our knowledge of the anti-inflammatory activity of this interesting molecule that is already credited with antioxidant activity. These two latter characteristics make thymol a molecule that can have helpful effects in controlling the inflammatory processes present in many infections.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.