Hydrogels are based on hydrophilic polymers which are cross-linked to prevent dissolution in water. Because hydrogels can contain large amounts of water, they are interesting devices for the delivery of protein drugs. In this contribution, biodegradable dextran-co-gelatin hydrogel microspheres (DG-MPs) are described which are based on physical interactions and are particularly suitable for the controlled delivery of pharmaceutically active proteins. The unique feature of this preparation system is that the hydrogel microsphere formation takes place in an all-aqueous solution, by which the use of organic solvents is avoided. We investigated the preparation and biological activities of recombinant human bone morphogenetic protein-2 (rhBMP2)-loaded dextran-co-gelatin hydrogel microspheres (rhBMP2-DG-MPs), which aimed to keep rhBMP2’s biological activity and to achieve a long-term sustained release of rhBMP2. The microspheres’ average diameter was about 20–40 µm and rhBMP2 release in vitro could be maintained for >10 days. Cytology studies showed that using rhBMP2-DG-MPs could promote the proliferation and osteoblastic differentiation of periodontal ligament cells better than using rhBMP2 aqueous solution. By a freeze-drying method, rhBMP2-DG-MPs could be adhered in chitosan membranes for guided tissue regeneration use, namely functionalized membranes. To evaluate bone regeneration induced by rhBMP2-DG-MPs, an animal experiment with canine class III furcation defects was adopted and the results indicated that using rhBMP2-DG-MPs incorporating scaffolds and functionalized membranes could gain more periodontal tissue regeneration than using scaffolds and general membranes soaked with concentrated rhBMP2 aqueous solution. Therefore, those studies demonstrate the potential of DG-MPs in the sustained delivery of low dosages of rhBMP2 to periodontal defects.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.