Aromatic aldehydes are good substrates of aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. However, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase and xanthine oxidase activities in the oxidation of isovanillin in separate preparations and also in freshly prepared and cryopreserved liver slices. The oxidation of isovanillin was also examined in the presence of specific inhibitors of each oxidizing enzyme. Minimal transformation of isovanillin to isovanillic acid was observed in partially purified aldehyde oxidase, which is thought to be due to residual xanthine oxidase activity. Isovanillin was rapidly metabolized to isovanillic acid by high amounts of purified xanthine oxidase, but only low amounts are present in guinea pig liver fraction. Thus the contribution of xanthine oxidase to isovanillin oxidation in guinea pig is very low. In contrast, isovanillin was rapidly catalyzed to isovanillic acid by guinea pig liver aldehyde dehydrogenase activity. The inhibitor studies revealed that isovanillin was predominantly metabolized by aldehyde dehydrogenase activity. The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared or cryopreserved liver slices has not been previously reported. In freshly prepared liver slices, isovanillin was rapidly converted to isovanillic acid, whereas the conversion was very slow in cryopreserved liver slices due to low aldehyde dehydrogenase activity. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. It is therefore concluded that isovanillin is predominantly metabolized by aldehyde dehydrogenase activity, with minimal contribution from either aldehyde oxidase or xanthine oxidase.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.