We assessed the functional response and the mechanisms following receptor stimulation of endothelin-1 (ET-1) in the rat renal artery. In this study, isometric tension was recorded in renal artery rings without endothelium. Cumulative application of ET-1 from 0.1 to 100 nmol/l induced a sustained concentration-dependent contraction in the renal artery. Submaximal contraction induced by 10 nmol/l ET-1 in 2.5 mmol/l Ca2+ and in the absence of inhibitors was used as control response (100%). The relative contribution of different sources of Ca2+ in ET-1-induced contraction was evaluated. The contractile response to 10 nmol/l ET-1 in 2.5 mmol/l Ca2+ (1.2 ± 0.2 g) was significantly inhibited either in Ca2+-free solution containing 100 µmol/l ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (0.6 ± 0.1 g) or after depletion of intracellular Ca2+ stores (0.62 ± 0.05 g). The contribution of phospholipase C and protein kinase C was evaluated by using their inhibitors 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC) and [1-(5-isoquinolinesulfonyl)-2-methylpiperazine] (H-7), respectively. The contractile response to 10 nmol/l ET-1 was inhibited by 10 µmol/l NCDC (to 80 ± 6%) and 30 µmol/l H-7 (to 76.6 ± 6.5%). We found that 1 µmol/l nifedipine inhibited the ET-1-induced contraction (to 48.7 ± 6.9%), indicating the contribution of Ca2+ influx through voltage-gated L-type Ca2+ channels to this response. Further, the inhibitory effect of nifedipine was to a greater extent as compared with NCDC or H-7. Additive inhibition of ET-1-induced contraction was not observed in the presence of both nifedipine and NCDC. We also evaluated the role of the ionic transport system in the ET-1-induced response by using 20 nmol/l 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), an inhibitor of Na+-H+ exchange, or 100 µmol/l ouabain, an inhibitor of Na+-K+-ATPase. The response to ET-1 was decreased by both EIPA (to 61.6 ± 8.4%) and ouabain (to 62.1 ± 8.6%). The contribution of Na+-Ca2+ exchange to ouabain action was tested using the inhibitor dimethyl amiloride HCl (10 µmol/l). The decrease in ET-1-induced contraction by the combination of ouabain and dimethyl amiloride HCl was similar to that observed with ouabain alone. In view of these observations, both extra- and intracellular sources of Ca2+ contribute to the contractile response induced by ET-1 in the renal artery. Our findings also revealed the importance of Ca2+ influx through voltage-gated L-type Ca2+ channels in mediating contraction to ET-1 in the renal artery, whereas a minor role of phospholipase C and protein kinase C was observed. Na+-H+ exchange and Na+-K+-ATPase also play a role in the ET-1-induced contraction in renal artery. Moreover, the contribution of Na+-K+-ATPase in ET-1 contraction is not an Na+-Ca2+ exchange-related process.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.