The inotropic action of prostaglandins PGF, PGD2 and PGE2 on isolated mouse left atria was characterized and compared with the positive inotropic action of acetylcholine, which has previously been shown to be mediated by prostaglandins released from the endocardial endothelium. PGF, PGD2 and PGE2 produced positive inotropic responses; the time course of the change in contractile force induced by PGF and PGD2 was about the same as that by acetylcholine, while that by PGE2 was slower. Fluprostenol and sulprostone, FP and EP receptor agonists, respectively, had positive inotropic effects while BW-245C, a DP receptor agonist, had no effect. AH-6809, a DP receptor antagonist, had no inhibitory effect on the positive inotropic response to PGD2. Dimethylamiloride, an inhibitor of Na+/H+ exchange, inhibited the positive inotropic response to PGF, PGD2 and acetylcholine, but not PGE2. Fluorometric pH measurement with carboxy-SNARF-1-loaded atrial myocytes revealed no change in intracellular pH on application of PGF. PGF and PGD2 significantly prolonged the duration of the atrial action potential while PGE2 had no significant effect. These findings suggest that prostaglandins induce positive inotropic response in mouse atria through FP and EP receptor stimulation and that the former mechanism mediates in part the positive inotropic response to acetylcholine.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.