The involvement of CYP enzymes in the metabolism of citalopram was studied, inclusive the conversion of demethylcitalopram to didemethylcitalopram and the formation of citalopram N-oxide, which both have not been considered previously. Using human mixed liver microsomes and cDNA-expressed CYP enzymes, we confirmed that CYP3A4, 2C19 and 2D6 are involved in the first demethylation step of citalopram, all favouring conversion of the biologically active S-enantiomer. Inhibitor studies indicated that at therapeutic citalopram concentrations CYP3A4 was responsible for 40–50% of demethylcitalopram formation, while the contribution of CYP2C19 increased and that of CYP2D6 tended to decrease with increasing drug concentration. CYP2D6 exclusively mediated the second demethylation step, and citalopram N-oxide was also exclusively formed by CYP2D6. None of the studied CYP enzymes mediated deamination to the propionic acid derivative.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.