Four monoclonal antibodies (MAbs) to phenobarbital-induced cytochrome P-450 (PB-P-450) show different patterns of inhibition of PB-P-450 catalyzed aryl hydrocarbon hydroxylase (AHH), 7-ethoxycoumarin deethylase, benzphetamine demethylase and ethylmorphine demethylase. The inhibition constants vary depending on the individual monoclonal antibody and the individual substrate. Two of the four monoclonal antibodies completely inhibit the reduction of cytochrome P-450 by NADPH cytochrome c (P-450) reductase. The same cytochrome P-450 bound to carbon monoxide, however, can be reduced chemically by sodium dithionite in the presence of the monoclonal antibody. These data indicate that the two MAbs examined completely prevent electron transfer by NADPH cytochrome c (P-450) reductase. Substrate binding is partially inhibited by the monoclonal antibody. The type I substrate-binding spectrum of benzphetamine is inhibited more than the type II binding spectrum of aniline. The degree of inhibition of the substrate binding as indicated by the spectrum is less than that observed for the inhibition of catalytic enzyme activity by the monoclonal antibodies. The data indicate that each of the MAbs are directed toward epitopes on the cytochromes P-450 with different relationships to the active catalytic site.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.