Introduction: We investigated the potential of LPS (10–300 µg/rat) administered intratracheally (i.t.) to induce reproducible features of acute lung injury (ALI) and compared the pharmacological efficacy of anti-inflammatory glucocorticoids and antifibrotic drugs to reduce the disease. Additionally, we studied the time-dependent progression of ALI in this LPS rat model. Methods: We conducted (1) dose effect studies of LPS administered i.t. at 10, 30, 100, and 300 μg/rat on ALI at 4 h timepoint; (2) pharmacological interventions using i.t. fluticasone (100 and 300 μg/rat), i.t. pirfenidone (4,000 μg/rat), and peroral dexamethasone (1 mg/kg) at 4 h timepoint; (3) kinetic studies at 0, 2, 4, 6, 8, 10, and 24 h post-LPS challenge. Phenotype or pharmacological efficacy was assessed using predetermined ALI features such as pulmonary inflammation, edema, and inflammatory mediators. Results: All LPS doses induced a similar increase of inflammation, edema, and inflammatory mediators, e.g., IL6, IL1β, TNFα, and CINC-1. In pharmacological intervention studies, we showed fluticasone and dexamethasone ameliorated ALI by inhibiting inflammation (>60–80%), edema (>70–100%), and the increase of cytokines IL6, IL1β, and TNFα (≥70–90%). We also noticed some inhibition of CINC-1 (25–35%) and TIMP1 (57%) increase with fluticasone and dexamethasone. Conversely, pirfenidone failed to inhibit inflammation, edema, and mediators of inflammation. Last, in ALI kinetic studies, we observed progressive pulmonary inflammation and TIMP1 levels, which peaked at 6 h and remained elevated up to 24 h. Progressive pulmonary edema started between 2 and 4 h and was sustained at later timepoints. On average, levels of IL6 (peak at 6–8 h), IL1β (peak at 2–10 h), TNFα (peak at 2 h), CINC-1 (peak at 2–6 h), and TGFβ1 (peak at 8 h) were elevated between 2 and 10 h and declined toward 24 h post-LPS challenge. Conclusion: Our data show that 10 μg/rat LPS achieved a robust, profound, and reproducible experimental ALI phenotype. Glucocorticoids ameliorated key ALI features at the 4-h timepoint, but the antifibrotic pirfenidone failed. Progressive inflammation and sustained pulmonary edema were present up to 24 h, whereas levels of inflammatory mediators were dynamic during ALI progression. This study’s data might be helpful in designing appropriate experiments to test the potential of new therapeutics to cure ALI.

1.
Manicone
AM
.
Role of the pulmonary epithelium and inflammatory signals in acute lung injury
.
Expert Rev Clin Immunol
.
2009
;
5
(
1
):
63
75
.
2.
Spadaro
S
,
Park
M
,
Turrini
C
,
Tunstall
T
,
Thwaites
R
,
Mauri
T
.
Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine
.
J Inflamm
.
2019
;
16
:
1
.
3.
Trent
MS
,
Stead
CM
,
Tran
AX
,
Hankins
JV
.
Diversity of endotoxin and its impact on pathogenesis
.
J Endotoxin Res
.
2006
;
12
(
4
):
205
23
.
4.
Fodor
,
Georgescu
AM
,
Cioc
AD
,
Grigorescu
BL
,
Cotoi
OS
,
Fodor
P
.
Time- and dose-dependent severity of lung injury in a rat model of sepsis
.
Rom J Morphol Embryol
.
2015
;
56
(
4
):
1329
37
.
5.
Li
P-Y
,
Liang
YC
,
Sheu
MJ
,
Huang
SS
,
Chao
CY
,
Kuo
YH
.
Alpinumisoflavone attenuates lipopolysaccharide-induced acute lung injury by regulating the effects of anti-oxidation and anti-inflammation both in vitro and in vivo
.
RSC Adv
.
2018
;
8
(
55
):
31515
28
.
6.
Calama
E
,
Ramis
I
,
Domènech
A
,
Carreño
C
,
De Alba
J
,
Prats
N
.
Tofacitinib ameliorates inflammation in a rat model of airway neutrophilia induced by inhaled LPS
.
Pulm Pharmacol Ther
.
2017
;
43
:
60
7
.
7.
Sommers
CD
,
Thompson
JM
,
Guzova
JA
,
Bonar
SL
,
Rader
RK
,
Mathialagan
S
.
Novel tight-binding inhibitory factor-kappaB kinase (IKK-2) inhibitors demonstrate target-specific anti-inflammatory activities in cellular assays and following oral and local delivery in an in vivo model of airway inflammation
.
J Pharmacol Exp Ther
.
2009
;
330
(
2
):
377
88
.
8.
Liu
F
,
Li
W
,
Pauluhn
J
,
Trübel
H
,
Wang
C
.
Lipopolysaccharide-induced acute lung injury in rats: comparative assessment of intratracheal instillation and aerosol inhalation
.
Toxicology
.
2013
;
304
:
158
66
.
9.
Sun
K
,
Huang
R
,
Yan
L
,
Li
DT
,
Liu
YY
,
Wei
XH
.
Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and akt/FoxO1 signaling pathways
.
Front Physiol
.
2018
;
9
:
1104
.
10.
Wang
G
,
Huang
X
,
Li
Y
,
Guo
K
,
Ning
P
,
Zhang
Y
.
PARP-1 inhibitor, DPQ, attenuates LPS-induced acute lung injury through inhibiting NF-κB-mediated inflammatory response
.
PLoS One
.
2013
;
8
(
11
):
e79757
.
11.
Kim
KH
,
Kwun
MJ
,
Han
CW
,
Ha
KT
,
Choi
JY
,
Joo
M
.
Suppression of lung inflammation in an LPS-induced acute lung injury model by the fruit hull of Gleditsia sinensis
.
BMC Complement Altern Med
.
2014
;
14
:
402
.
12.
Yin
N
,
Peng
Z
,
Li
B
,
Xia
J
,
Wang
Z
,
Yuan
J
.
Isoflurane attenuates lipopolysaccharide-induced acute lung injury by inhibiting ROS-mediated NLRP3 inflammasome activation
.
Am J Transl Res
.
2016
;
8
(
5
):
2033
46
.
13.
Fu
PK
,
Yang
CY
,
Huang
SC
,
Hung
YW
,
Jeng
KC
,
Huang
YP
.
Evaluation of LPS-induced acute lung injury attenuation in rats by aminothiazole-paeonol derivatives
.
Molecules
.
2017
;
22
(
10
):
1605
.
14.
Iwamura
H
,
Inushima
K
,
Takeuchi
K
,
Kakutani
M
,
Wakitani
K
.
Prophylactic effect of JTE-607 on LPS-induced acute lung injury in rats with CINC-1 inhibition
.
Inflamm Res
.
2002
;
51
(
3
):
160
6
.
15.
Conte
E
,
Gili
E
,
Fagone
E
,
Fruciano
M
,
Iemmolo
M
,
Vancheri
C
.
Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts
.
Eur J Pharm Sci
.
2014
;
58
:
13
9
.
16.
Liu
Y
,
Lu
F
,
Kang
L
,
Wang
Z
,
Wang
Y
.
Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium
.
BMC Pulm Med
.
2017
;
17
(
1
):
63
.
17.
Card
JW
,
Racz
WJ
,
Brien
JF
,
Margolin
SB
,
Massey
TE
.
Differential effects of pirfenidone on acute pulmonary injury and ensuing fibrosis in the hamster model of amiodarone-induced pulmonary toxicity
.
Toxicol Sci
.
2003
;
75
(
1
):
169
80
.
18.
Gurujeyalakshmi
G
,
Hollinger
MA
,
Giri
SN
.
Pirfenidone inhibits PDGF isoforms in bleomycin hamster model of lung fibrosis at the translational level
.
Am J Physiol
.
1999
276
2
L311
8
.
19.
Iyer
SN
,
Gurujeyalakshmi
G
,
Giri
SN
.
Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis
.
J Pharmacol Exp Ther
.
1999
;
289
(
1
):
211
8
.
20.
Inomata
M
,
Kamio
K
,
Azuma
A
,
Matsuda
K
,
Kokuho
N
,
Miura
Y
.
Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis
.
Respir Res
.
2014
;
15
(
1
):
16
.
21.
Spond
J
,
Case
N
,
Chapman
RW
,
Crawley
Y
,
Egan
RW
,
Fine
J
.
Inhibition of experimental acute pulmonary inflammation by pirfenidone
.
Pulm Pharmacol Ther
.
2003
;
16
(
4
):
207
14
.
22.
Stenton
GR
,
Mackenzie
LF
,
Tam
P
,
Cross
JL
,
Harwig
C
,
Raymond
J
.
Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo
.
Br J Pharmacol
.
2013
;
168
(
6
):
1519
29
.
23.
Nials
AT
,
Tralau-Stewart
CJ
,
Gascoigne
MH
,
Ball
DI
,
Ranshaw
LE
,
Knowles
RG
.
In vivo characterization of GSK256066, a high-affinity inhaled phosphodiesterase 4 inhibitor
.
J Pharmacol Exp Ther
.
2011
;
337
(
1
):
137
44
.
24.
Al-Harbi
NO
,
Imam
F
,
Al-Harbi
MM
,
Ansari
MA
,
Zoheir
KMA
,
Korashy
HM
.
Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-κB, COX-2, and pro-inflammatory mediators
.
Immunol Invest
.
2016
;
45
(
4
):
349
69
.
25.
Ali
H
,
Khan
A
,
Ali
J
,
Ullah
H
,
Khan
A
,
Ali
H
.
Attenuation of LPS-induced acute lung injury by continentalic acid in rodents through inhibition of inflammatory mediators correlates with increased Nrf2 protein expression
.
BMC Pharmacol Toxicol
.
2020
;
21
(
1
):
81
.
26.
Johnson
ER
,
Matthay
MA
.
Acute lung injury: epidemiology, pathogenesis, and treatment
.
J Aerosol Med Pulm Drug Deliv
.
2010
;
23
(
4
):
243
52
.
27.
Matute-Bello
G
,
Downey
G
,
Moore
BB
,
Groshong
SD
,
Matthay
MA
,
Slutsky
AS
.
An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals
.
Am J Respir Cell Mol Biol
.
2011
;
44
(
5
):
725
38
.
28.
Kadam
AH
,
Schnitzer
JE
.
Characterization of acute lung injury in the bleomycin rat model
.
Physiol Rep
.
2023
;
11
(
5
):
e15618
.
29.
Yin
Q
,
Fang
S
,
Park
J
,
Crews
AL
,
Parikh
I
,
Adler
KB
.
An inhaled inhibitor of myristoylated alanine-rich C kinase substrate reverses LPS-induced acute lung injury in mice
.
Am J Respir Cell Mol Biol
.
2016
;
55
(
5
):
617
22
.
30.
Williams
AE
,
Chambers
RC
.
The mercurial nature of neutrophils: still an enigma in ARDS
.
Am J Physiol Lung Cell Mol Physiol
.
2014
306
3
L217
30
.
31.
Grinnell
KL
,
Chichger
H
,
Braza
J
,
Duong
H
,
Harrington
EO
.
Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation
.
Am J Respir Cell Mol Biol
.
2012
;
46
(
5
):
623
32
.
32.
Itoh
T
,
Obata
H
,
Murakami
S
,
Hamada
K
,
Kangawa
K
,
Kimura
H
.
Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats
.
Am J Physiol Lung Cell Mol Physiol
.
2007
293
2
L446
52
.
33.
Jayne
JG
,
Bensman
TJ
,
Schaal
JB
,
Park
AYJ
,
Kimura
E
,
Tran
D
.
Rhesus theta-defensin-1 attenuates endotoxin-induced acute lung injury by inhibiting proinflammatory cytokines and neutrophil recruitment
.
Am J Respir Cell Mol Biol
.
2018
;
58
(
3
):
310
9
.
34.
Saito
F
,
Tasaka
S
,
Inoue
KI
,
Miyamoto
K
,
Nakano
Y
,
Ogawa
Y
.
Role of interleukin-6 in bleomycin-induced lung inflammatory changes in mice
.
Am J Respir Cell Mol Biol
.
2008
;
38
(
5
):
566
71
.
35.
Ganter
MT
,
Roux
J
,
Miyazawa
B
,
Howard
M
,
Frank
JA
,
Su
G
.
Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms
.
Circ Res
.
2008
;
102
(
7
):
804
12
.
36.
Lu
HL
,
Huang
XY
,
Luo
YF
,
Tan
WP
,
Chen
PF
,
Guo
YB
.
Activation of M1 macrophages plays a critical role in the initiation of acute lung injury
.
Biosci Rep
.
2018
38
2
).
37.
Trottier
MD
,
Newsted
MM
,
King
LE
,
Fraker
PJ
.
Natural glucocorticoids induce expansion of all developmental stages of murine bone marrow granulocytes without inhibiting function
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
6
):
2028
33
.
38.
Chiang
PC
,
Hu
Y
,
Blom
JD
,
Thompson
DC
.
Evaluating the suitability of using rat models for preclinical efficacy and side effects with inhaled corticosteroids nanosuspension formulations
.
Nanoscale Res Lett
.
2010
;
5
(
6
):
1010
9
.
39.
Belchamber
KB
,
Thomas
CM
,
Dunne
AE
,
Barnes
PJ
,
Donnelly
LE
.
Comparison of fluticasone propionate and budesonide on COPD macrophage and neutrophil function
.
Int J Chron Obstruct Pulmon Dis
.
2018
;
13
:
2883
97
.
40.
Kadam
AH
,
Kandasamy
K
,
Buss
T
,
Cederstrom
B
,
Yang
C
,
Narayanapillai
S
.
Targeting caveolae to pump bispecific antibody to TGF-beta into diseased lungs enables ultra-low dose therapeutic efficacy
.
PLoS One
.
2022
;
17
(
11
):
e0276462
.
41.
Peters
DM
,
Vadász
I
,
Wujak
L
,
Wygrecka
M
,
Olschewski
A
,
Becker
C
.
TGF-beta directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury
.
Proc Natl Acad Sci U S A
.
2014
111
3
E374
83
.
42.
Pittet
JF
,
Griffiths
MJ
,
Geiser
T
,
Kaminski
N
,
Dalton
SL
,
Huang
X
.
TGF-beta is a critical mediator of acute lung injury
.
J Clin Invest
.
2001
;
107
(
12
):
1537
44
.
43.
Righetti
RF
,
Dos Santos
TM
,
Camargo
LN
,
Aristóteles
LRCRB
,
Fukuzaki
S
,
de Souza
FCR
.
Protective effects of anti-IL17 on acute lung injury induced by LPS in mice
.
Front Pharmacol
.
2018
;
9
:
1021
.
You do not currently have access to this content.