Introduction: Cerebral ischemia induces reactive proliferation of astrocytes (astrogliosis) and glial scar formation. As a physical and biochemical barrier, the glial scar not only hinders spontaneous axonal regeneration and neuronal repair but also deteriorates the neuroinflammation in the recovery phase of ischemic stroke. Objectives: Previous studies have shown the neuroprotective effects of the valproic acid (2-n-propylpentanoic acid, VPA) against ischemic stroke, but its effects on the ischemia-induced formation of astrogliosis and glial scar are still unknown. As targeting astrogliosis has become a therapeutic strategy for ischemic stroke, this study was designed to determine whether VPA can inhibit the ischemic stroke-induced glial scar formation and to explore its molecular mechanisms. Methods: Glial scar formation was induced by an ischemia-reperfusion (I/R) model in vivo and an oxygen and glucose deprivation (OGD)-reoxygenation (OGD/Re) model in vitro. Animals were treated with an intraperitoneal injection of VPA (250 mg/kg/day) for 28 days, and the ischemic stroke-related behaviors were assessed. Results: Four weeks of VPA treatment could markedly reduce the brain atrophy volume and improve the behavioral deficits in rats’ I/R injury model. The results showed that VPA administrated upon reperfusion or 1 day post-reperfusion could also decrease the expression of the glial scar makers such as glial fibrillary acidic protein, neurocan, and phosphacan in the peri-infarct region after I/R. Consistent with the in vivo data, VPA treatment showed a protective effect against OGD/Re-induced astrocytic cell death in the in vitro model and also decreased the expression of GFAP, neurocan, and phosphacan. Further studies revealed that VPA significantly upregulated the expression of acetylated histone 3, acetylated histone 4, and heat-shock protein 70.1B in the OGD/Re-induced glial scar formation model. Conclusion: VPA produces neuroprotective effects and inhibits the glial scar formation during the recovery period of ischemic stroke via inhibition of histone deacetylase and induction of Hsp70.1B.

1.
Shen
P
,
Hou
S
,
Zhu
M
,
Zhao
M
,
Ouyang
Y
,
Feng
J
.
Cortical spreading depression preconditioning mediates neuroprotection against ischemic stroke by inducing AMP-activated protein kinase-dependent autophagy in a rat cerebral ischemic/reperfusion injury model
.
J Neurochem
.
2017
;
140
(
5
):
799
813
. .
2.
Zaleska
MM
,
Mercado
ML
,
Chavez
J
,
Feuerstein
GZ
,
Pangalos
MN
,
Wood
A
.
The development of stroke therapeutics: promising mechanisms and translational challenges
.
Neuropharmacology
.
2009
;
56
(
2
):
329
41
. .
3.
Kawano
H
,
Bivard
A
,
Lin
L
,
Spratt
NJ
,
Miteff
F
,
Parsons
MW
,
Relationship between collateral status, contrast transit, and contrast density in acute ischemic stroke
.
Stroke
.
2016
;
47
(
3
):
742
9
. .
4.
Qin
AP
,
Liu
CF
,
Qin
YY
,
Hong
LZ
,
Xu
M
,
Yang
L
,
Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia
.
Autophagy
.
2010
;
6
(
6
):
738
53
. .
5.
Nedergaard
M
,
Dirnagl
U
.
Role of glial cells in cerebral ischemia
.
Glia
.
2005
;
50
(
4
):
281
6
. .
6.
Sofroniew
MV
,
Vinters
HV
.
Astrocytes: biology and pathology
.
Acta Neuropathol
.
2010
;
119
(
1
):
7
35
. .
7.
Choudhury
GR
,
Ding
S
.
Reactive astrocytes and therapeutic potential in focal ischemic stroke
.
Neurobiol Dis
.
2016
;
85
:
234
44
. .
8.
Rolls
A
,
Shechter
R
,
Schwartz
M
.
The bright side of the glial scar in CNS repair
.
Nat Rev Neurosci
.
2009
;
10
(
3
):
235
41
. .
9.
Wang
R
,
Zhang
X
,
Zhang
J
,
Fan
Y
,
Shen
Y
,
Hu
W
,
Oxygen-glucose deprivation induced glial scar-like change in astrocytes
.
PLoS One
.
2012
;
7
(
5
):
e37574
. .
10.
Sims
NR
,
Yew
WP
.
Reactive astrogliosis in stroke: contributions of astrocytes to recovery of neurological function
.
Neurochem Int
.
2017
;
107
:
88
103
. .
11.
Zhu
YM
,
Gao
X
,
Ni
Y
,
Li
W
,
Kent
TA
,
Qiao
SG
,
Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia-reperfusion brain injury
.
Neuroscience
.
2017
;
356
:
125
41
. .
12.
Mori
T
,
Tan
J
,
Arendash
GW
,
Koyama
N
,
Nojima
Y
,
Town
T
.
Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia
.
Stroke
.
2008
;
39
(
7
):
2114
21
. .
13.
Zhu
Z
,
Zhang
Q
,
Yu
Z
,
Zhang
L
,
Tian
D
,
Zhu
S
,
Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo
.
Glia
.
2007
;
55
(
5
):
546
58
. .
14.
Komitova
M
,
Perfilieva
E
,
Mattsson
B
,
Eriksson
PS
,
Johansson
BB
.
Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat
.
J Cereb Blood Flow Metab
.
2002
;
22
(
7
):
852
60
. .
15.
Silver
J
,
Miller
JH
.
Regeneration beyond the glial scar
.
Nat Rev Neurosci
.
2004
;
5
(
2
):
146
56
. .
16.
Shi
Y
,
Yi
C
,
Li
X
,
Wang
J
,
Zhou
F
,
Chen
X
.
Overexpression of Mitofusin2 decreased the reactive astrocytes proliferation in vitro induced by oxygen-glucose deprivation/reoxygenation
.
Neurosci Lett
.
2017
;
639
:
68
73
. .
17.
Burda
JE
,
Sofroniew
MV
.
Reactive gliosis and the multicellular response to CNS damage and disease
.
Neuron
.
2014
;
81
(
2
):
229
48
. .
18.
Panickar
KS
,
Norenberg
MD
.
Astrocytes in cerebral ischemic injury: morphological and general considerations
.
Glia
.
2005
;
50
(
4
):
287
98
. .
19.
Li
CY
,
Li
X
,
Liu
SF
,
Qu
WS
,
Wang
W
,
Tian
DS
.
Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation
.
Neurochem Int
.
2015
;
83–84
:
9
18
. .
20.
Hartl
FU
,
Bracher
A
,
Hayer-Hartl
M
.
Molecular chaperones in protein folding and proteostasis
.
Nature
.
2011
;
475
(
7356
):
324
32
. .
21.
Rajdev
S
,
Hara
K
,
Kokubo
Y
,
Mestril
R
,
Dillmann
W
,
Weinstein
PR
,
Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction
.
Ann Neurol
.
2000
;
47
(
6
):
782
91
. .
22.
Sun
Y
,
Ouyang
YB
,
Xu
L
,
Chow
AM
,
Anderson
R
,
Hecker
JG
,
The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro
.
J Cereb Blood Flow Metab
.
2006
;
26
(
7
):
937
50
. .
23.
Giffard
RG
,
Yenari
MA
.
Many mechanisms for hsp70 protection from cerebral ischemia
.
J Neurosurg Anesthesiol
.
2004
;
16
(
1
):
53
61
. .
24.
Yang
XJ
,
Seto
E
.
The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
.
Nat Rev Mol Cell Biol
.
2008
;
9
(
3
):
206
18
. .
25.
Chiu
CT
,
Wang
Z
,
Hunsberger
JG
,
Chuang
DM
.
Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder
.
Pharmacol Rev
.
2013
;
65
(
1
):
105
42
. .
26.
Göttlicher
M
,
Minucci
S
,
Zhu
P
,
Krämer
OH
,
Schimpf
A
,
Giavara
S
,
Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells
.
EMBO J
.
2001
;
20
(
24
):
6969
78
. .
27.
Phiel
CJ
,
Zhang
F
,
Huang
EY
,
Guenther
MG
,
Lazar
MA
,
Klein
PS
.
Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen
.
J Biol Chem
.
2001
;
276
(
39
):
36734
41
. .
28.
Kanai
H
,
Sawa
A
,
Chen
RW
,
Leeds
P
,
Chuang
DM
.
Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons
.
Pharmacogenomics J
.
2004
;
4
(
5
):
336
44
. .
29.
Ren
M
,
Leng
Y
,
Jeong
M
,
Leeds
PR
,
Chuang
DM
.
Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction
.
J Neurochem
.
2004
;
89
(
6
):
1358
67
. .
30.
Qin
Y
,
He
Y
,
Zhu
YM
,
Li
M
,
Ni
Y
,
Liu
J
,
CID1067700, a late endosome GTPase Rab7 receptor antagonist, attenuates brain atrophy, improves neurologic deficits and inhibits reactive astrogliosis in rat ischemic stroke
.
Acta Pharmacol Sin
.
2019
;
40
(
6
):
724
36
. .
31.
Li
D
,
Huang
B
,
Liu
J
,
Li
L
,
Li
X
.
Decreased brain K(ATP) channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by sevoflurane post-conditioning in diabetic rats
.
PLoS One
.
2013
;
8
(
8
):
e73334
. .
32.
Hong
LZ
,
Gu
WW
,
Ni
Y
,
Xu
M
,
Yang
L
,
Liu
YL
,
Postischemic long-term treatment with Qiangli Tianma Duzhong capsule improves brain functional recovery via the improvement of hemorrheology and the inhibition of platelet aggregation in a rat model of focal cerebral ischemia
.
Evid Based Complement Alternat Med
.
2013
;
2013
:
795365
. .
33.
Mecca
AP
,
Regenhardt
RW
,
O’Connor
TE
,
Joseph
JP
,
Raizada
MK
,
Katovich
MJ
,
Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke
.
Experimental physiology
.
2011
;
96
(
10
):
1084
96
.
34.
Longa
EZ
,
Weinstein
PR
,
Carlson
S
,
Cummins
R
.
Reversible middle cerebral artery occlusion without craniectomy in rats
.
Stroke
.
1989
;
20
(
1
):
84
91
. .
35.
Pengyue
Z
,
Tao
G
,
Hongyun
H
,
Liqiang
Y
,
Yihao
D
.
Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra
.
Biomed Pharmacother
.
2017
;
90
:
69
76
. .
36.
Xu
M
,
Yang
L
,
Rong
JG
,
Ni
Y
,
Gu
WW
,
Luo
Y
,
Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway
.
Glia
.
2014
;
62
(
6
):
855
80
. .
37.
Schallert
T
,
Fleming
SM
,
Leasure
JL
,
Tillerson
JL
,
Bland
ST
.
CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury
.
Neuropharmacology
.
2000
;
39
(
5
):
777
87
. .
38.
Zhang
L
,
Qu
Y
,
Yang
C
,
Tang
J
,
Zhang
X
,
Mao
M
,
Signaling pathway involved in hypoxia-inducible factor-1alpha regulation in hypoxic-ischemic cortical neurons in vitro
.
Neurosci Lett
.
2009
;
461
(
1
):
1
6
. .
39.
Rosafio
K
,
Pellerin
L
.
Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation
.
Glia
.
2014
;
62
(
3
):
477
90
. .
40.
Gottron
FJ
,
Ying
HS
,
Choi
DW
.
Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death
.
Mol Cell Neurosci
.
1997
;
9
(
3
):
159
69
. .
41.
Thomas
CE
,
Mayle
DA
.
NMDA-sensitive neurons profoundly influence delayed staurosporine-induced apoptosis in rat mixed cortical neuronal cultures
.
Brain Res
.
2000
;
884
(
1–2
):
163
73
. .
42.
Antonelli
T
,
Tomasini
MC
,
Fournier
J
,
Mazza
R
,
Tanganelli
S
,
Pirondi
S
,
Neurotensin receptor involvement in the rise of extracellular glutamate levels and apoptotic nerve cell death in primary cortical cultures after oxygen and glucose deprivation
.
Cereb Cortex
.
2008
;
18
(
8
):
1748
57
. .
43.
Du
F
,
Zhu
L
,
Qian
ZM
,
Wu
XM
,
Yung
WH
,
Ke
Y
.
Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity
.
Biochim Biophys Acta
.
2010
;
1802
(
11
):
1048
53
. .
44.
He
P
,
He
W
,
Wang
A
,
Xia
T
,
Xu
B
,
Zhang
M
,
PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons
.
Neurotoxicology
.
2008
;
29
(
1
):
124
9
. .
45.
Gu
W
,
Lu
S
,
Ni
Y
,
Liu
Z
,
Zhou
X
,
Zhu
Y
,
2-(3′,5′-Dimethoxybenzylidene) cyclopentanone, a novel synthetic small-molecule compound, provides neuroprotective effects against ischemic stroke
.
Neuroscience
.
2016
;
316
:
26
40
.
46.
Kim
HJ
,
Rowe
M
,
Ren
M
,
Hong
JS
,
Chen
PS
,
Chuang
DM
.
Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action
.
J Pharmacol Exp Ther
.
2007
;
321
(
3
):
892
901
. .
47.
Hayakawa
K
,
Nakano
T
,
Irie
K
,
Higuchi
S
,
Fujioka
M
,
Orito
K
,
Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice
.
J Cereb Blood Flow Metab
.
2010
;
30
(
4
):
871
82
. .
48.
Shimada
IS
,
Borders
A
,
Aronshtam
A
,
Spees
JL
.
Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke
.
Stroke
.
2011
;
42
(
11
):
3231
7
. .
49.
Bao
Y
,
Qin
L
,
Kim
E
,
Bhosle
S
,
Guo
H
,
Febbraio
M
,
CD36 is involved in astrocyte activation and astroglial scar formation
.
J Cereb Blood Flow Metab
.
2012
;
32
(
8
):
1567
77
. .
50.
Barreto
GE
,
Sun
X
,
Xu
L
,
Giffard
RG
.
Astrocyte proliferation following stroke in the mouse depends on distance from the infarct
.
PLoS One
.
2011
;
6
(
11
):
e27881
. .
51.
Aschner
M
,
Sonnewald
U
,
Tan
KH
.
Astrocyte modulation of neurotoxic injury
.
Brain Pathol
.
2002
;
12
(
4
):
475
81
. .
52.
Pope
A
.
Neuroglia: quantitative aspects
. In:
Schoffeniels
E
,
Franck
G
,
Hertz
L
,
Tower
DB
, editors.
Dynamic properties of glial cells
.
London
:
Pergamon
;
1978
. p.
13
20
.
53.
Swanson
RA
,
Ying
W
,
Kauppinen
TM
.
Astrocyte influences on ischemic neuronal death
.
Curr Mol Med
.
2004
;
4
(
2
):
193
205
. .
54.
Zhang
ZZ
,
Gong
YY
,
Shi
YH
,
Zhang
W
,
Qin
XH
,
Wu
XW
.
Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush
.
Neuroscience
.
2012
;
224
:
282
93
. .
55.
Wang
Z
,
Leng
Y
,
Tsai
L-K
,
Leeds
P
,
Chuang
D-M
.
Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition
.
J Cereb Blood Flow Metab
.
2011
;
31
(
1
):
52
7
.
56.
Wang
Z
,
Tsai
LK
,
Munasinghe
J
,
Leng
Y
,
Fessler
EB
,
Chibane
F
,
Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke
.
Stroke
.
2012
;
43
(
9
):
2430
6
. .
57.
Chen
PS
,
Peng
GS
,
Li
G
,
Yang
S
,
Wu
X
,
Wang
CC
,
Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes
.
Mol Psychiatry
.
2006
;
11
(
12
):
1116
25
. .
58.
Brown
IR
.
Heat shock proteins and protection of the nervous system
.
Ann N Y Acad Sci
.
2007
;
1113
(
1
):
147
58
. .
59.
Marinova
Z
,
Leng
Y
,
Leeds
P
,
Chuang
DM
.
Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons
.
Neuropharmacology
.
2011
;
60
(
7–8
):
1109
15
. .
60.
Marinova
Z
,
Ren
M
,
Wendland
JR
,
Leng
Y
,
Liang
MH
,
Yasuda
S
,
Valproic acid induces functional heat-shock protein 70 via class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation
.
J Neurochem
.
2009
;
111
(
4
):
976
87
.
61.
Kinouchi
H
,
Sharp
FR
,
Hill
MP
,
Koistinaho
J
,
Sagar
SM
,
Chan
PH
.
Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat
.
J Cereb Blood Flow Metab
.
1993
;
13
(
1
):
105
15
. .
62.
Yenari
MA
,
Fink
SL
,
Sun
GH
,
Chang
LK
,
Patel
MK
,
Kunis
DM
,
Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy
.
Ann Neurol
.
1998
;
44
(
4
):
584
91
. .
63.
Fredduzzi
S
,
Mariucci
G
,
Tantucci
M
,
Ambrosini
MV
.
Generalized induction of 72-kDa heat-shock protein after transient focal ischemia in rat brain
.
Exp Brain Res
.
2001
;
136
(
1
):
19
24
. .
64.
Hoehn
B
,
Ringer
TM
,
Xu
L
,
Giffard
RG
,
Sapolsky
RM
,
Steinberg
GK
,
Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage
.
J Cereb Blood Flow Metab
.
2001
;
21
(
11
):
1303
9
. .
65.
Zhang
Z
,
Qin
X
,
Tong
N
,
Zhao
X
,
Gong
Y
,
Shi
Y
,
Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation
.
Exp Eye Res
.
2012
;
94
(
1
):
98
108
. .
66.
Pandey
P
,
Saleh
A
,
Nakazawa
A
,
Kumar
S
,
Srinivasula
SM
,
Kumar
V
,
Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90
.
EMBO J
.
2000
;
19
(
16
):
4310
22
. .
67.
Jäättelä
M
,
Wissing
D
,
Kokholm
K
,
Kallunki
T
,
Egeblad
M
.
Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases
.
EMBO J
.
1998
;
17
(
21
):
6124
34
. .
68.
Ravagnan
L
,
Gurbuxani
S
,
Susin
SA
,
Maisse
C
,
Daugas
E
,
Zamzami
N
,
Heat-shock protein 70 antagonizes apoptosis-inducing factor
.
Nat Cell Biol
.
2001
;
3
(
9
):
839
43
. .
69.
Su
KH
,
Dai
C
.
Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders
.
Cell Mol Life Sci
.
2016
;
73
(
22
):
4231
48
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.