Background: Wnt signaling plays an essential role in tumor cell growth, including the development of malignant mesothelioma (MM). Epigenetic silencing of negative Wnt regulators leading to constitutive Wnt signaling has been observed in various cancers and warrants further attention. We have reported that a succinate ether derivative of α-tocotrienol (T3E) has potent cytotoxic effects in MM cells. Thus, in this study, we investigated whether the anti-MM effect of T3E could be mediated via the epigenetic alteration of the Wnt antagonist gene, Dickkopf-1 (DKK1). Methods: WST-1 and cell analyzers were employed to analyze the effects of T3E on cell viability and apoptosis of human MM cell lines (H2452, H28). Real-time PCR and Western blot were performed to evaluate the expression at mRNA and protein levels. Methylation status and epigenetic modifications of DKK1’s promoter regions after T3E treatment in MM cells were studied using methylation-specific PCR and Chromatin immunoprecipitation. Small interfering RNA-mediated knockdown -(siRNA), and specific inhibitors, were used to validate DKK1 as a target of T3E. Results: T3E markedly impaired MM cell viability, increased the expression of phosphorylated-JNK and DKK1 and suppressed cyclin D, a downstream target gene of Wnt signaling. Knockdown of DKK1 expression by siRNA or a specific JNK inhibitor confirmed the contribution of DKK1 and JNK to T3E-induced cytotoxicity in MM cells. On the other hand, cytoskeleton-associated protein 4 (CKAP4) expression, which promotes cell proliferation as a Wnt-independent DKK1 receptor was inhibited by T3E. Silencing CKAP4 by -siRNA did not appear to directly affect MM cell viability, thereby indicating that expression of both DKK1 and CKAP4 is required. Furthermore, T3E-mediated inhibition of both DNA methyltransferases (DNMT1, 3A, and 3B) and histone deacetylases (HDAC1, 2, 3, and 8) in MM cells leads to increased DKK1 expression, thereby promoting tumor growth inhibition. MM cells treated with Zebularine (a DNMT inhibitor) and sodium butyrate (an HDAC inhibitor) exhibited cytotoxic effects, which may explain the inhibitory action of T3E on MM cells. In addition, an enhanced expression of DKK1 in MM cells following T3E treatment is positively correlated with the methylation status of its promoter; T3E decreased DNA methylation and increased histone acetylation. Moreover, T3E specifically increased histone H3 lysine 4 (H3K4) methylation activity, whereas no effects were observed on histone H3K9 and H3K27. Conclusions: Targeting the epigenetic induction of DKK1 may lead to effective treatment of MM, and T3E has great potential to induce anti-MM activity.

Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.