Introduction: In our research on understanding glioblastoma’s resistance mechanisms to immunotherapy, we extensively investigated through an innovative technology that enables the simultaneous assessment of multiple biomarkers. With this approach, we aim to gain deeper insights into the interplay between immunosuppressive cells (ICs) and effector cells (ECs). Methods: One hundred twenty-six cases of glioblastoma were studied employing tissue microarrays stained with a panel of immune infiltrate validated via multiplex immunofluorescence and quantified by advanced image analysis. All cases were categorized according to an EC/IC ratio and their respective medians. Statistical correlations between cell populations and with survival were calculated. Results: M2 macrophages were the most abundant ICs, followed by a variable number of ECs and protumoral activated microglia, and a scant quantity of FoxP3 cells. EC showed a statistically significant direct positive correlation with ICs. The patients with tumors exhibiting an EC/IC ratio ≤0.063 displayed a significantly poorer outcome. Furthermore, in the context of incomplete surgical resection, significant differences were evident considering immune scenarios. Conclusions: By integrating multiplex technology with advanced imaging analysis, we successfully identified 4 distinct immune scenarios in glioblastoma. We observed a favorable immune scenario characterized by a relatively high EC/IC ratio, which is especially evident in the clinical setting of incomplete tumor resection. This promising immune scenario holds significant potential for selecting suitable candidates for immunotherapy in glioblastoma.

1.
Idoate Gastearena
MA
,
López-Janeiro
Á
,
Lecumberri Aznarez
A
,
Arana-Iñiguez
I
,
Guillén-Grima
F
.
A quantitative digital analysis of tissue immune components reveals an immunosuppressive and anergic immune response with relevant prognostic significance in glioblastoma
.
Biomedicines
.
2022
;
10
(
7
):
1753
.
2.
Salgado
R
,
Denkert
C
,
Demaria
S
,
Sirtaine
N
,
Klauschen
F
,
Pruneri
G
, et al
.
The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014
.
Ann Oncol
.
2015
;
26
(
2
):
259
71
.
3.
Komohara
Y
,
Ohnishi
K
,
Kuratsu
J
,
Takeya
M
.
Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas
.
J Pathol
.
2008
;
216
(
1
):
15
24
.
4.
Wainwright
DA
,
Dey
M
,
Chang
A
,
Lesniak
MS
.
Targeting Tregs in malignant brain cancer: overcoming IDO
.
Front Immunol
.
2013
;
4
:
116
.
5.
Yang
S
,
Liu
Y
,
Li
MY
,
Ng
CSH
,
Yang
SL
,
Wang
S
, et al
.
FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer
.
Mol Cancer
.
2017
;
16
(
1
):
124
.
6.
Wang
J
,
Gong
R
,
Zhao
C
,
Lei
K
,
Sun
X
,
Ren
H
.
Human FOXP3 and tumour microenvironment
.
Immunology
.
2023
;
168
(
2
):
248
55
.
7.
Su
P
,
Jiang
L
,
Zhang
Y
,
Yu
T
,
Kang
W
,
Liu
Y
, et al
.
Crosstalk between tumor-associated macrophages and tumor cells promotes chemoresistance via CXCL5/PI3K/AKT/mTOR pathway in gastric cancer
.
Cancer Cell Int
.
2022
;
22
(
1
):
290
.
8.
Saleh
R
,
Elkord
E
.
FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets
.
Cancer Lett
.
2020
;
490
:
174
85
.
9.
van Hooren
L
,
Handgraaf
SM
,
Kloosterman
DJ
,
Karimi
E
,
van Mil
LWHG
,
Gassama
AA
, et al
.
CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma
.
Nat Cancer
.
2023
;
4
(
5
):
665
81
.
10.
Sayour
EJ
,
McLendon
P
,
McLendon
R
,
De Leon
G
,
Reynolds
R
,
Kresak
J
, et al
.
Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma
.
Cancer Immunol Immunother
.
2015
;
64
(
4
):
419
27
.
11.
Peng
LS
,
Zhuang
Y
,
Shi
Y
,
Zhao
YL
,
Wang
TT
,
Chen
N
, et al
.
Increased tumor-infiltrating CD8(+)Foxp3(+) T lymphocytes are associated with tumor progression in human gastric cancer
.
Cancer Immunol Immunother
.
2012
;
61
(
11
):
2183
92
.
12.
Khan
F
,
Pang
L
,
Dunterman
M
,
Lesniak
MS
,
Heimberger
AB
,
Chen
P
.
Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy
.
J Clin Investig
.
2023
;
133
(
1
):
e163446
.
13.
Böttcher
C
,
Schlickeiser
S
,
Sneeboer
MAM
,
Kunkel
D
,
Knop
A
,
Paza
E
, et al
.
Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry
.
Nat Neurosci
.
2019
;
22
(
1
):
78
90
.
14.
Jurga
AM
,
Paleczna
M
,
Kuter
KZ
.
Overview of general and discriminating markers of differential microglia phenotypes
.
Front Cell Neurosci
.
2020
;
14
:
198
.
15.
Tremble
LF
,
Forde
PF
,
Soden
DM
.
Clinical evaluation of macrophages in cancer: role in treatment, modulation and challenges
.
Cancer Immunol Immunother
.
2017
;
66
(
12
):
1509
27
.
16.
Liu
X
,
Hogg
GD
,
Zuo
C
,
Borcherding
NC
,
Baer
JM
,
Lander
VE
, et al
.
Context-dependent activation of STING-interferon signaling by CD11b agonists enhances anti-tumor immunity
.
Cancer Cell
.
2023
;
41
(
6
):
1073
90.e12
.
17.
Vidyarthi
A
,
Agnihotri
T
,
Khan
N
,
Singh
S
,
Tewari
MK
,
Radotra
BD
, et al
.
Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity
.
Cancer Immunol Immunother
.
2019
;
68
(
12
):
1995
2004
.
18.
Annovazzi
L
,
Mellai
M
,
Bovio
E
,
Mazzetti
S
,
Pollo
B
,
Schiffer
D
.
Microglia immunophenotyping in gliomas
.
Oncol Lett
.
2018
;
15
(
1
):
998
1006
.
19.
Müller
S
,
Kohanbash
G
,
Liu
SJ
,
Alvarado
B
,
Carrera
D
,
Bhaduri
A
, et al
.
Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment
.
Genome Biol
.
2017
;
18
(
1
):
234
.
20.
WHO Classification of Tumours Editorial Board
.
World Health Organization classification of tumours of the central nervous system
. 5th ed.
Lyon
:
International Agency for Research on Cancer
;
2021
.
21.
Gállego Pérez-Larraya
J
,
Garcia-Moure
M
,
Labiano
S
,
Patiño-García
A
,
Dobbs
J
,
Gonzalez-Huarriz
M
, et al
.
Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma
.
N Engl J Med
.
2022
;
386
(
26
):
2471
81
.
22.
Abengozar-Muela
M
,
Esparza
MV
,
Garcia-Ros
D
,
Vásquez
CE
,
Echeveste
JI
,
Idoate
MA
, et al
.
Diverse immune environments in human lung tuberculosis granulomas assessed by quantitative multiplexed immunofluorescence
.
Mod Pathol
.
2020
;
33
(
12
):
2507
19
.
23.
Widodo
SS
,
Hutchinson
RA
,
Fang
Y
,
Mangiola
S
,
Neeson
PJ
,
Darcy
PK
, et al
.
Toward precision immunotherapy using multiplex immunohistochemistry and in silico methods to define the tumor immune microenvironment
.
Cancer Immunol Immunother
.
2021
;
70
(
7
):
1811
20
.
24.
Geraghty
T
,
Rajagopalan
A
,
Aslam
R
,
Pohlman
A
,
Venkatesh
I
,
Zloza
A
, et al
.
Positive allosteric modulation of CD11b as a novel therapeutic strategy against lung cancer
.
Front Oncol
.
2020
;
10
:
748
.
25.
Lamers
C
,
Plüss
CJ
,
Ricklin
D
.
The promiscuous profile of complement receptor 3 in ligand binding, immune modulation, and pathophysiology
.
Front Immunol
.
2021
;
12
:
662164
.
26.
Broz
ML
,
Binnewies
M
,
Boldajipour
B
,
Nelson
AE
,
Pollack
JL
,
Erle
DJ
, et al
.
Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity
.
Cancer Cell
.
2014
;
26
(
5
):
638
52
.
27.
Schmid
MC
,
Khan
SQ
,
Kaneda
MM
,
Pathria
P
,
Shepard
R
,
Louis
TL
, et al
.
Integrin CD11b activation drives anti-tumor innate immunity
.
Nat Commun
.
2018
;
9
(
1
):
5379
.
28.
Gottlieb
A
,
Toledano-Furman
N
,
Prabhakara
KS
,
Kumar
A
,
Caplan
HW
,
Bedi
S
, et al
.
Time dependent analysis of rat microglial surface markers in traumatic brain injury reveals dynamics of distinct cell subpopulations
.
Sci Rep
.
2022
;
12
(
1
):
6289
.
29.
Donson
AM
,
Birks
DK
,
Schittone
SA
,
Kleinschmidt-DeMasters
BK
,
Sun
DY
,
Hemenway
MF
, et al
.
Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors
.
J Immunol
.
2012
;
189
(
4
):
1920
7
.
30.
Geisenberger
C
,
Mock
A
,
Warta
R
,
Rapp
C
,
Schwager
C
,
Korshunov
A
, et al
.
Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain
.
Acta Neuropathol
.
2015
;
130
(
3
):
419
34
.
31.
El Andaloussi
A
,
Lesniak
MS
.
An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme
.
Neuro Oncol
.
2006
;
8
(
3
):
234
43
.
32.
Díaz
LR
,
Saavedra-López
E
,
Romarate
L
,
Mitxitorena
I
,
Casanova
PV
,
Cribaro
GP
, et al
.
Imbalance of immunological synapse-kinapse states reflects tumor escape to immunity in glioblastoma
.
JCI Insight
.
2018
;
3
(
18
):
e120757
.
33.
Mauldin
IS
,
Jo
J
,
Wages
NA
,
Yogendran
LV
,
Mahmutovic
A
,
Young
SJ
, et al
.
Proliferating CD8+ T cell infiltrates are associated with improved survival in glioblastoma
.
Cells
.
2021
;
10
(
12
):
3378
.
34.
Martinez-Lage
M
,
Lynch
TM
,
Bi
Y
,
Cocito
C
,
Way
GP
,
Pal
S
, et al
.
Immune landscapes associated with different glioblastoma molecular subtypes
.
Acta Neuropathol Commun
.
2019
;
7
(
1
):
203
.
35.
Mezheyeuski
A
,
Backman
M
,
Mattsson
J
,
Martín-Bernabé
A
,
Larsson
C
,
Hrynchyk
I
, et al
.
An immune score reflecting pro- and anti-tumoural balance of tumour microenvironment has major prognostic impact and predicts immunotherapy response in solid cancers
.
EBioMedicine
.
2023
;
88
:
104452
.
36.
Wang
S
,
Wang
J
,
Chen
Z
,
Luo
J
,
Guo
W
,
Sun
L
, et al
.
Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance
.
NPJ Precis Oncol
.
2024
;
8
(
1
):
31
.
37.
Sánchez-Paulete
AR
,
Mateus-Tique
J
,
Mollaoglu
G
,
Nielsen
SR
,
Marks
A
,
Lakshmi
A
, et al
.
Targeting macrophages with CAR T cells delays solid tumor progression and enhances antitumor immunity
.
Cancer Immunol Res
.
2022
;
10
(
11
):
1354
69
.
38.
Mantovani
A
,
Allavena
P
,
Marchesi
F
,
Garlanda
C
.
Macrophages as tools and targets in cancer therapy
.
Nat Rev Drug Discov
.
2022
;
21
(
11
):
799
820
.
39.
Hodges
TR
,
Ott
M
,
Xiu
J
,
Gatalica
Z
,
Swensen
J
,
Zhou
S
, et al
.
Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy
.
Neuro Oncol
.
2017
;
19
(
8
):
1047
57
.
40.
Omuro
A
,
Vlahovic
G
,
Lim
M
,
Sahebjam
S
,
Baehring
J
,
Cloughesy
T
, et al
.
Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143
.
Neuro Oncol
.
2018
;
20
(
5
):
674
86
.
41.
Schalper
KA
,
Rodriguez-Ruiz
ME
,
Diez-Valle
R
,
López-Janeiro
A
,
Porciuncula
A
,
Idoate
MA
, et al
.
Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma
.
Nat Med
.
2019
;
25
(
3
):
470
6
.
42.
Peranzoni
E
,
Lemoine
J
,
Vimeux
L
,
Feuillet
V
,
Barrin
S
,
Kantari-Mimoun
C
, et al
.
Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
17
):
E4041
50
.
43.
Dustin
ML
.
T-cell activation through immunological synapses and kinapses
.
Immunol Rev
.
2008
;
221
:
77
89
.
44.
Zhu
M
,
Bai
L
,
Liu
X
,
Peng
S
,
Xie
Y
,
Bai
H
, et al
.
Silence of a dependence receptor CSF1R in colorectal cancer cells activates tumor-associated macrophages
.
J Immunother Cancer
.
2022
;
10
(
12
):
e005610
.
45.
Elmore
MR
,
Najafi
AR
,
Koike
MA
,
Dagher
NN
,
Spangenberg
EE
,
Rice
RA
, et al
.
Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain
.
Neuron
.
2014
;
82
(
2
):
380
97
.
46.
Butowski
N
,
Colman
H
,
De Groot
JF
,
Omuro
AM
,
Nayak
L
,
Wen
PY
, et al
.
Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study
.
Neuro Oncol
.
2016
;
18
(
4
):
557
64
.
47.
Backman
M
,
Strell
C
,
Lindberg
A
,
Mattsson
JSM
,
Elfving
H
,
Brunnström
H
, et al
.
Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer
.
Eur J Cancer
.
2023
;
185
:
40
52
.
48.
Massi
D
,
Rulli
E
,
Cossa
M
,
Valeri
B
,
Rodolfo
M
,
Merelli
B
, et al
.
The density and spatial tissue distribution of CD8+ and CD163+ immune cells predict response and outcome in melanoma patients receiving MAPK inhibitors
.
J Immunother Cancer
.
2019
;
7
(
1
):
308
.
49.
Blakstad
H
,
Brekke
J
,
Rahman
MA
,
Arnesen
VS
,
Miletic
H
,
Brandal
P
, et al
.
Survival in a consecutive series of 467 glioblastoma patients: association with prognostic factors and treatment at recurrence at two independent institutions
.
PLoS One
.
2023
;
18
(
2
):
e0281166
.
50.
Voduc
D
,
Kenney
C
,
Nielsen
TO
.
Tissue microarrays in clinical oncology
.
Semin Radiat Oncol
.
2008
;
18
(
2
):
89
97
.
51.
Aust
S
,
Bachmayr-Heyda
A
,
Pils
D
,
Zhao
L
,
Tong
W
,
Berger
A
, et al
.
Determination of tumor-infiltrating CD8+ lymphocytes in human ovarian cancer
.
Int J Gynecol Pathol
.
2013
;
32
(
3
):
269
76
.
52.
Lee
ATJ
,
Chew
W
,
Wilding
CP
,
Guljar
N
,
Smith
MJ
,
Strauss
DC
, et al
.
The adequacy of tissue microarrays in the assessment of inter- and intra-tumoural heterogeneity of infiltrating lymphocyte burden in leiomyosarcoma
.
Sci Rep
.
2019
;
9
(
1
):
14602
.
53.
Elfving
H
,
Thurfjell
V
,
Mattsson
JSM
,
Backman
M
,
Strell
C
,
Micke
P
.
Tumor heterogeneity confounds lymphocyte metrics in diagnostic lung cancer biopsies
.
Arch Pathol Lab Med
.
2024
;
148
(
1
):
e18
24
.
54.
Schmidt
LH
,
Biesterfeld
S
,
Kümmel
A
,
Faldum
A
,
Sebastian
M
,
Taube
C
, et al
.
Tissue microarrays are reliable tools for the clinicopathological characterization of lung cancer tissue
.
Anticancer Res
.
2009
;
29
(
1
):
201
9
.
You do not currently have access to this content.