Introduction: Artificial intelligence image recognition has applications in clinical practice. The purpose of this study was to develop an automated image classification model for lung cancer cytology using a deep learning convolutional neural network (DCNN). Methods: Liquid-based cytology samples from 8 normal parenchymal (N), 22 adenocarcinoma (ADC), and 15 squamous cell carcinoma (SQCC) surgical specimens were prepared, and 45 Papanicolaou-stained slides were scanned using whole-slide imaging. The final dataset of 9,141 patches consisted of 2,737 N, 4,756 ADC, and 1,648 SQCC samples. Densenet-121 was used as the DCNN to classify N versus malignant (ADC+SQCC) and ADC versus SQCC images. AdamW optimizer and 5-fold cross-validation were used in the training. Results: For malignancy prediction, the sensitivity, specificity, and accuracy were 0.97, 0.85, and 0.94, respectively, in the patch-level classification, and 0.92, 0.88, and 0.91, respectively, in the case-level classification. For SQCC prediction, the sensitivity, specificity, and accuracy were 0.86, 0.91, and 0.90, respectively, in the patch-level classification and 0.73, 0.82, and 0.78, respectively, in the case-level classification. Conclusion: The DCNN model performed excellently in predicting malignancy and histological types of lung cancer. This model may be useful for predicting cytopathological diagnosis in clinical situations by reinforcing training.

1.
Travis
WD
,
Brambilla
E
,
Burke
AP
,
Marx
A
,
Nicholson
AG
.
WHO classification of tumours of the lung, pleura, thymus and heart
. 4th ed.
Lyon
:
IARC
;
2015
.
2.
Scagliotti
GV
,
Parikh
P
,
von Pawel
J
,
Biesma
B
,
Vansteenkiste
J
,
Manegold
C
, et al
.
Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer
.
J Clin Oncol
.
2008
;
26
(
21
):
3543
51
.
3.
Travis
WD
,
Brambilla
E
,
Nicholson
AG
,
Yatabe
Y
,
Austin
JHM
,
Beasley
MB
, et al
.
The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification
.
J Thorac Oncol
.
2015
;
10
(
9
):
1243
60
.
4.
Nicholson
AG
,
Tsao
MS
,
Beasley
MB
,
Borczuk
AC
,
Brambilla
E
,
Cooper
WA
, et al
.
The 2021 WHO classification of lung tumors: impact of advances since 2015
.
J Thorac Oncol
.
2022
;
17
(
3
):
362
87
.
5.
Edwards
SL
,
Roberts
C
,
McKean
ME
,
Cockburn
JS
,
Jeffrey
RR
,
Kerr
KM
.
Preoperative histological classification of primary lung cancer: accuracy of diagnosis and use of the non-small cell category
.
J Clin Pathol
.
2000
;
53
(
7
):
537
40
.
6.
Nicholson
AG
,
Gonzalez
D
,
Shah
P
,
Pynegar
MJ
,
Deshmukh
M
,
Rice
A
, et al
.
Refining the diagnosis and EGFR status of non-small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTF-1, cytokeratin 5/6, and P63, and EGFR mutation analysis
.
J Thorac Oncol
.
2010
;
5
(
4
):
436
41
.
7.
Jain
D
,
Nambirajan
A
,
Chen
G
,
Geisinger
K
,
Hiroshima
K
,
Layfield
L
, et al
.
NSCLC subtyping in conventional cytology: results of the international association for the study of lung cancer cytology working group survey to determine specific cytomorphologic criteria for adenocarcinoma and squamous cell carcinoma
.
J Thorac Oncol
.
2022
;
17
(
6
):
793
805
.
8.
Coudray
N
,
Ocampo
PS
,
Sakellaropoulos
T
,
Narula
N
,
Snuderl
M
,
Fenyö
D
, et al
.
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
.
Nat Med
.
2018
;
24
(
10
):
1559
67
.
9.
Campanella
G
,
Hanna
MG
,
Geneslaw
L
,
Miraflor
A
,
Werneck Krauss Silva
V
,
Busam
KJ
, et al
.
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
.
Nat Med
.
2019
;
25
(
8
):
1301
9
.
10.
Yang
H
,
Chen
L
,
Cheng
Z
,
Yang
M
,
Wang
J
,
Lin
C
, et al
.
Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study
.
BMC Med
.
2021
;
19
(
1
):
80
.
11.
Janßen
C
,
Boskamp
T
,
Le’Clerc Arrastia
J
,
Otero Baguer
D
,
Hauberg-Lotte
L
,
Kriegsmann
M
, et al
.
Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI
.
Cancers
.
2022
;
14
(
24
):
6181
.
12.
Teramoto
A
,
Tsukamoto
T
,
Kiriyama
Y
,
Fujita
H
.
Automated classification of lung cancer types from cytological images using deep convolutional neural networks
.
BioMed Res Int
.
2017
;
2017
:
4067832
.
13.
Teramoto
A
,
Yamada
A
,
Kiriyama
Y
,
Tsukamoto
T
,
Yan
K
,
Zhang
L
, et al
.
Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network
.
Inform Med Unlocked
.
2019
;
16
:
100205
.
14.
Teramoto
A
,
Tsukamoto
T
,
Yamada
A
,
Kiriyama
Y
,
Imaizumi
K
,
Saito
K
, et al
.
Deep learning approach to classification of lung cytological images: two-step training using actual and synthesized images by progressive growing of generative adversarial networks
.
PLoS One
.
2020
;
15
(
3
):
e0229951
.
15.
Gonzalez
D
,
Dietz
RL
,
Pantanowitz
L
.
Feasibility of a deep learning algorithm to distinguish large cell neuroendocrine from small cell lung carcinoma in cytology specimens
.
Cytopathology
.
2020
;
31
(
5
):
426
31
.
16.
Tsukamoto
T
,
Teramoto
A
,
Yamada
A
,
Kiriyama
Y
,
Sakurai
E
,
Michiba
A
, et al
.
Comparison of fine-tuned deep convolutional neural networks for the automated classification of lung cancer cytology images with integration of additional classifiers
.
Asian Pac J Cancer Prev
.
2022
;
23
(
4
):
1315
24
.
17.
Ishii
S
,
Takamatsu
M
,
Ninomiya
H
,
Inamura
K
,
Horai
T
,
Iyoda
A
, et al
.
Machine learning-based gene alteration prediction model for primary lung cancer using cytologic images
.
Cancer Cytopathol
.
2022
;
130
(
10
):
812
23
.
18.
Tanaka
R
,
Sakamoto
N
,
Suzuki
H
,
Tachibana
K
,
Ohtsuka
K
,
Kishimoto
K
, et al
.
Genotyping and cytomorphological subtyping of lung adenocarcinoma based on liquid-based cytology
.
Diagn Cytopathol
.
2019
;
47
(
6
):
564
70
.
19.
Fujii
T
,
Asano
A
,
Shimada
K
,
Tatsumi
Y
,
Obayashi
C
,
Konishi
N
.
Evaluation of RNA and DNA extraction from liquid-based cytology specimens
.
Diagn Cytopathol
.
2016
;
44
(
10
):
833
40
.
20.
Akahane
T
,
Yamaguchi
T
,
Kato
Y
,
Yokoyama
S
,
Hamada
T
,
Nishida
Y
, et al
.
Comprehensive validation of liquid-based cytology specimens for next-generation sequencing in cancer genome analysis
.
PLoS One
.
2019
;
14
(
6
):
e0217724
.
21.
Tanaka
R
,
Ohtsuka
K
,
Ogura
W
,
Arai
N
,
Yoshida
T
,
Nakazato
Y
, et al
.
Subtyping and EGFR mutation testing from blocks of cytological materials, based on liquid-based cytology for lung cancer at bronchoscopic examinations
.
Diagn Cytopathol
.
2020
;
48
(
6
):
516
23
.
22.
Tanaka
R
,
Fujiwara
M
,
Nakazato
Y
,
Arai
N
,
Tachibana
K
,
Sakamoto
N
, et al
.
Optimal preservations of cytological materials using liquid-based cytology fixatives for next-generation sequencing analysis
.
Acta Cytol
.
2022
;
66
(
5
):
457
65
.
23.
Tanaka
R
,
Fujiwara
M
,
Sakamoto
N
,
Suzuki
H
,
Tachibana
K
,
Ohtsuka
K
, et al
.
Cytomorphometric and flow cytometric analyses using liquid-based cytology materials in subtypes of lung adenocarcinoma
.
Diagn Cytopathol
.
2022
;
50
(
8
):
394
403
.
24.
Tanaka
R
,
Fujiwara
M
,
Sakamoto
N
,
Kanno
H
,
Arai
N
,
Tachibana
K
, et al
.
Cytological characteristics of histological types of lung cancer by cytomorphometric and flow cytometric analyses using liquid-based cytology materials
.
Diagn Cytopathol
.
2023
;
51
(
6
):
356
64
.
25.
Biscotti
CV
,
Dawson
AE
,
Dziura
B
,
Galup
L
,
Darragh
T
,
Rahemtulla
A
, et al
.
Assisted primary screening using the automated ThinPrep Imaging System
.
Am J Clin Pathol
.
2005
;
123
(
2
):
281
7
.
26.
Dziura
B
,
Quinn
S
,
Richard
K
.
Performance of an imaging system vs. manual screening in the detection of squamous intraepithelial lesions of the uterine cervix
.
Acta Cytol
.
2006
;
50
(
3
):
309
11
.
27.
Huang
G
,
Liu
Z
,
van der Maaten
L
,
Weinberger
KQ
.
Densely connected convolutional networks
.
arXiv
.
2016
;
12
:
1608.06993
.
28.
Loshchilov
I
,
Hutter
F
.
Decoupled weight decay regularization
.
arXiv
.
2017
;
14
:
1711.05101
.
29.
Zhong
Z
,
Zheng
L
,
Kang
G
,
Li
S
,
Yang
Y
.
Random erasing data augmentation
.
arXiv
.
2017
;
16
:
1708.04896
.
30.
Srinivas
S
,
Fleuret
F
.
Full-gradient representation for neural network visualization
.
arXiv
.
2019
;
2
:
1905.00780
.
31.
Patel
TS
,
Shah
MG
,
Gandhi
JS
,
Patel
P
.
Accuracy of cytology in sub typing non small cell lung carcinomas
.
Diagn Cytopathol
.
2017
;
45
(
7
):
598
603
.
32.
Thakur
N
,
Yoon
H
,
Chong
Y
.
Current trends of artificial intelligence for colorectal cancer pathology image analysis: a systematic review
.
Cancers
.
2020
;
12
(
7
):
1884
.
33.
Thakur
N
,
Alam
MR
,
Abdul-Ghafar
J
,
Chong
Y
.
Recent application of artificial intelligence in non-gynecological cancer cytopathology: a systematic review
.
Cancers
.
2022
;
14
:
3529
.
34.
Balki
I
,
Amirabadi
A
,
Levman
J
,
Martel
AL
,
Emersic
Z
,
Meden
B
, et al
.
Sample-size determination methodologies for machine learning in medical imaging research: a systematic review
.
Can Assoc Radiol J
.
2019
;
70
(
4
):
344
53
.
You do not currently have access to this content.