Introduction: Many mouse models for autoimmune diseases also have lesions in non-target organs, which may make it difficult to determine whether the target organ lesion is primary or secondary. Hyposalivation has conventionally been studied using genetically modified mouse models for Sjogren’s syndrome as well as spontaneous autoimmune mice with systemic lesions, none of which has salivary gland-specific injury. Methods: In this study, we established a salivary gland-specific injury mouse model using the toxin receptor-mediated cell knockout (TRECK) system by gene modification with the transgene composed of the 5′ untranslated region of human salivary mucin gene MUC7 (highly expressed specifically in human salivary gland) inserted at the upstream of hHB-EGF (diphtheria toxin receptor) in the TRECK vector. Results: In this transgenic mouse model, we confirmed salivary gland-specific expression of hHB-EGF gene, and hyposalivation after treatment with diphtheria toxin. Histological assessment of the salivary gland from these mice showed granular convoluted tubule epithelial cells destruction at the same position as a positivity in TUNEL assay. Conclusion: This transgenic mouse model may become a useful tool for elucidating the mechanisms involved in hyposalivation and for developing pharmaceuticals and tissue regenerative medical products for this condition.

1.
Gura
T
.
Just spit it out
.
Nat Med
.
2008
;
14
(
7
):
706
9
.
2.
Tanasiewicz
M
,
Hildebrandt
T
,
Obersztyn
I
.
Xerostomia of various etiologies: a review of the literature
.
Adv Clin Exp Med
.
2016
;
25
(
1
):
199
206
.
3.
Nakamura
H
,
Koji
T
,
Tominaga
M
,
Kawakami
A
,
Migita
K
,
Kawabe
Y
, et al
.
Apoptosis in labial salivary glands from Sjögren’s Syndrome (SS) patients: comparison with Human T Lymphotropic Virus-I (HTLV-I)-seronegative and -seropositive SS patients
.
Clin Exp Immunol
.
1998
;
114
(
1
):
106
12
.
4.
Jimenez
F
,
Aiba-Masago
S
,
Al Hashimi
I
,
Vela-Roch
N
,
Fernandes
G
,
Yeh
CK
, et al
.
Activated caspase 3 and cleaved poly(ADP-ribose)polymerase in salivary epithelium suggest a pathogenetic mechanism for Sjögren’s syndrome
.
Rheumatology
.
2002
;
41
(
3
):
338
42
.
5.
Robinson
CP
,
Yamachika
S
,
Alford
CE
,
Cooper
C
,
Pichardo
EL
,
Shah
N
, et al
.
Elevated levels of cysteine protease activity in saliva and salivary glands of the Nonobese Diabetic (NOD) mouse model for Sjögren syndrome
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
11
):
5767
71
.
6.
Choi
SS
,
Jang
E
,
Jang
K
,
Jung
SJ
,
Hwang
K-G
,
Youn
J
.
Autoantibody-mediated dysfunction of salivary glands leads to xerostomia in SKG mice
.
Immune Netw
.
2019
;
19
(
6
):
e44
11
.
7.
Haneji
N
,
Nakamura
T
,
Takio
K
,
Yanagi
K
,
Higashiyama
H
,
Saito
I
, et al
.
Identification of alpha-fodrin as a candidate autoantigen in primary Sjögren’s syndrome
.
Science
.
1997
;
276
(
5312
):
604
7
.
8.
Andrews
BS
,
Eisenberg
RA
,
Theofilopoulos
AN
,
Izui
S
,
Wilson
CB
,
McConahey
PJ
, et al
.
Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains
.
J Exp Med
.
1978
;
148
(
5
):
1198
215
.
9.
Groom
J
,
Kalled
SL
,
Cutler
AH
,
Olson
C
,
Woodcock
SA
,
Schneider
P
, et al
.
Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome
.
J Clin Invest
.
2002
;
109
(
1
):
59
68
.
10.
Saito
I
,
Haruta
K
,
Shimuta
M
,
Inoue
H
,
Sakurai
H
,
Yamada
K
, et al
.
Fas ligand-mediated exocrinopathy resembling Sjögren’s syndrome in mice transgenic for IL-10
.
J Immunol
.
1999
;
162
(
5
):
2488
94
.
11.
Limaye
A
,
Hall
BE
,
Zhang
L
,
Cho
A
,
Prochazkova
M
,
Zheng
C
, et al
.
Targeted TNF-α overexpression drives salivary gland inflammation
.
J Dent Res
.
2019
;
98
(
6
):
713
9
.
12.
Shen
L
,
Zhang
C
,
Wang
T
,
Brooks
S
,
Ford
RJ
,
Lin-Lee
YC
, et al
.
Development of autoimmunity in IL-14alpha-transgenic mice
.
J Immunol
.
2006
;
177
(
8
):
5676
86
.
13.
Saito
M
,
Iwawaki
T
,
Taya
C
,
Yonekawa
H
,
Noda
M
,
Inui
Y
, et al
.
Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice
.
Nat Biotechnol
.
2001
;
19
(
8
):
746
50
.
14.
Schneider
CA
,
Rasband
WS
,
Eliceiri
KW
.
NIH Image to ImageJ: 25 years of image analysis
.
Nat Methods
.
2012
;
9
(
7
):
671
5
.
15.
Schindelin
J
,
Arganda-Carreras
I
,
Frise
E
,
Kaynig
V
,
Longair
M
,
Pietzsch
T
, et al
.
Fiji: an open-source platform for biological-image analysis
.
Nat Methods
.
2012
;
9
(
7
):
676
82
.
16.
Rueden
CT
,
Schindelin
J
,
Hiner
MC
,
DeZonia
BE
,
Walter
AE
,
Arena
ET
, et al
.
ImageJ2: ImageJ for the next generation of scientific image data
.
BMC Bioinformatics
.
2017
;
18
(
1
):
529
6
.
17.
Nakagawa
S
,
Cuthill
IC
.
Effect size, confidence interval and statistical significance: a practical guide for biologists
.
Biol Rev
.
2007
;
82
(
4
):
591
605
.
18.
Erdfelder
E
.
G * Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical
.
Sciences
.
2007
;
39
(
2
):
175
91
.
19.
Iwamoto
R
,
Takagi
M
,
Akatsuka
J
,
Ono
K
,
Kishi
Y
,
Mekada
E
.
Characterization of a novel anti-human HB-EGF monoclonal antibody applicable for paraffin-embedded tissues and diagnosis of HB-EGF-Related cancers
.
Monoclon Antib Immunodiagn Immunother
.
2016
;
35
(
2
):
73
82
.
20.
Bobek
LA
,
Tsai
H
,
Biesbrock
AR
,
Levine
MJ
.
Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7)
.
J Biol Chem
.
1993
;
268
(
27
):
20563
9
.
21.
Mitchell
PJ
,
Tjian
R
.
Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins
.
Science
.
1989
;
245
(
4916
):
371
8
.
22.
Roeder
RG
.
Lasker Basic Medical Research Award. The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen
.
Nat Med
.
2003
;
9
(
10
):
1239
44
.
23.
Rosenfeld
MG
,
Lunyak
VV
,
Glass
CK
.
Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response
.
Genes Dev
.
2006
;
20
(
11
):
1405
28
.
24.
Bobek
LA
,
Li
H
,
Rojstaczer
N
,
Jones
C
,
Gross
KW
,
Levine
MJ
.
Tissue-specific expression of human salivary mucin gene, MUC7, in transgenic mice
.
Transgenic Res
.
1998
;
7
(
3
):
195
204
.
25.
Yamaizumi
M
,
Mekada
E
,
Uchida
T
,
Okada
Y
.
One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell
.
Cell
.
1978
;
15
(
1
):
245
50
.
26.
Gao
Y
,
Chen
Y
,
Zhang
Z
,
Yu
X
,
Zheng
J
.
Recent advances in mouse models of sjögren’s syndrome
.
Front Immunol
.
2020
;
11
:
1158
.
27.
Makino
S
,
Kunimoto
K
,
Muraoka
Y
,
Mizushima
Y
,
Katagiri
K
,
Tochino
Y
.
Breeding of a non-obese, diabetic strain of mice
.
Exp Anim
.
1980
;
29
(
1
):
1
13
.
28.
Li
H
,
Dai
M
,
Zhuang
Y
.
A T cell intrinsic role of Id3 in a mouse model for primary Sjögren’s syndrome
.
Immunity
.
2004
;
21
(
4
):
551
60
.
29.
Turpie
B
,
Yoshimura
T
,
Gulati
A
,
Rios
JD
,
Dartt
DA
,
Masli
S
.
Sjögren’s syndrome-like ocular surface disease in thrombospondin-1 deficient mice
.
Am J Pathol
.
2009
;
175
(
3
):
1136
47
.
30.
Haneji
N
,
Hamano
H
,
Yanagi
K
,
Hayashi
Y
.
A new animal model for primary Sjögren’s syndrome in NFS/sld mutant mice
.
J Immunol
.
1994
;
153
(
6
):
2769
77
.
31.
Kimura
Y
,
Saito
M
,
Kimata
Y
,
Kohno
K
.
Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin
.
J Biochem
.
2007
;
142
(
1
):
105
12
.
32.
Means
AL
,
Ray
KC
,
Singh
AB
,
Washington
MK
,
Whitehead
RH
,
Harris
RC
, et al
.
Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia
.
Gastroenterology
.
2003
;
124
(
4
):
1020
36
.
You do not currently have access to this content.