Identifying a microbiome pattern in gastric cancer (GC) is hugely debatable due to the variation resulting from the diversity of the studied populations, clinical scenarios, and metagenomic approach. H. pylori remains the main microorganism impacting gastric carcinogenesis and seems necessary for the initial steps of the process. Nevertheless, an additional non-H. pylori microbiome pattern is also described, mainly at the final steps of the carcinogenesis. Unfortunately, most of the presented results are not reproducible, and there are no consensual candidates to share the H. pylori protagonists. Limitations to reach a consistent interpretation of metagenomic data include contamination along every step of the process, which might cause relevant misinterpretations. In addition, the functional consequences of an altered microbiome might be addressed. Aiming to minimize methodological bias and limitations due to small sample size and the lack of standardization of bioinformatics assessment and interpretation, we carried out a comprehensive analysis of the publicly available metagenomic data from various conditions relevant to gastric carcinogenesis. Mainly, instead of just analyzing the results of each available publication, a new approach was launched, allowing the comprehensive analysis of the total sample amount, aiming to produce a reliable interpretation due to using a significant number of samples, from different origins, in a standard protocol. Among the main results, Helicobacter and Prevotella figured in the “top 6” genera of every group. Helicobacter was the first one in chronic gastritis (CG), gastric cancer (GC), and adjacent (ADJ) groups, while Prevotella was the leader among healthy control (HC) samples. Groups of bacteria are differently abundant in each clinical situation, and bacterial metabolic pathways also diverge along the carcinogenesis cascade. This information may support future microbiome interventions aiming to face the carcinogenesis process and/or reduce GC risk.

1.
Bray
F
,
Ferlay
J
,
Soerjomataram
I
,
Siegel
RL
,
Torre
LA
,
Jemal
A
.
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2018
;
68
(
6
):
394
424
. .
2.
Marchesi
JR
,
Ravel
J
.
The vocabulary of microbiome research: a proposal
.
Microbiome
.
2015
;
3
:
31
. .
3.
Nejman
D
,
Livyatan
I
,
Fuks
G
,
Gavert
N
,
Zwang
Y
,
Geller
LT
, et al.
The human tumor microbiome is composed of tumor type-specific intracellular bacteria
.
Science
.
2020
;
368
(
6494
):
973
80
. .
4.
de Martel
C
,
Georges
D
,
Bray
F
,
Ferlay
J
,
Clifford
GM
.
Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis
.
Lancet Glob Health
.
2020
;
8
(
2
):
e180
e90
. .
5.
Plummer
M
,
Franceschi
S
,
Vignat
J
,
Forman
D
,
de Martel
C
.
Global burden of gastric cancer attributable to Helicobacter pylori
.
Int J Cancer
.
2015
;
136
(
2
):
487
90
. .
6.
Ferreira
RM
,
Pereira-Marques
J
,
Pinto-Ribeiro
I
,
Costa
JL
,
Carneiro
F
,
Machado
JC
, et al.
Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota
.
Gut
.
2018
;
67
(
2
):
226
36
. .
7.
de Assumpcao
PP
,
Araujo
TMT
,
de Assumpcao
PB
,
Barra
WF
,
Khayat
AS
,
Assumpcao
CB
, et al.
Suicide journey of H. pylori through gastric carcinogenesis: the role of non-H. pylori microbiome and potential consequences for clinical practice
.
Eur J Clin Microbiol Infect Dis
.
2019
;
38
(
9
):
1591
7
.
8.
Engstrand
L
,
Graham
DY
.
Microbiome and gastric cancer
.
Dig Dis Sci
.
2020
;
65
(
3
):
865
73
. .
9.
Schulz
C
,
Schütte
K
,
Mayerle
J
,
Malfertheiner
P
.
The role of the gastric bacterial microbiome in gastric cancer: Helicobacter pylori and beyond
.
Therap Adv Gastroenterol
.
2019
;
12
:
1756284819894062
.
10.
Eun
CS
,
Kim
BK
,
Han
DS
,
Kim
SY
,
Kim
KM
,
Choi
BY
, et al.
Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods
.
Helicobacter
.
2014
;
19
(
6
):
407
16
. .
11.
Bertelli
C
,
Greub
G
.
Rapid bacterial genome sequencing: methods and applications in clinical microbiology
.
Clin Microbiol Infect
.
2013
;
19
(
9
):
803
13
. .
12.
Choi
HI
,
Choi
JP
,
Seo
J
,
Kim
BJ
,
Rho
M
,
Han
JK
, et al.
Helicobacter pylori-derived extracellular vesicles increased in the gastric juices of gastric adenocarcinoma patients and induced inflammation mainly via specific targeting of gastric epithelial cells
.
Exp Mol Med
.
2017
;
49
(
5
):
e330
. .
13.
Park
CH
,
Lee
JG
,
Lee
AR
,
Eun
CS
,
Han
DS
.
Network construction of gastric microbiome and organization of microbial modules associated with gastric carcinogenesis
.
Sci Rep
.
2019
;
9
(
1
):
12444
. .
14.
Dicksved
J
,
Lindberg
M
,
Rosenquist
M
,
Enroth
H
,
Jansson
JK
,
Engstrand
L
.
Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls
.
J Med Microbiol
.
2009
;
58
(
Pt 4
):
509
16
. .
15.
Aviles-Jimenez
F
,
Vazquez-Jimenez
F
,
Medrano-Guzman
R
,
Mantilla
A
,
Torres
J
.
Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer
.
Sci Rep
.
2014
;
4
:
4202
. .
16.
Jo
HJ
,
Kim
J
,
Kim
N
,
Park
JH
,
Nam
RH
,
Seok
YJ
, et al.
Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis
.
Helicobacter
.
2016
;
21
(
5
):
364
74
. .
17.
Wang
L
,
Zhou
J
,
Xin
Y
,
Geng
C
,
Tian
Z
,
Yu
X
, et al.
Bacterial overgrowth and diversification of microbiota in gastric cancer
.
Eur J Gastroenterol Hepatol
.
2016
;
28
(
3
):
261
6
. .
18.
Castaño-Rodríguez
N
,
Goh
KL
,
Fock
KM
,
Mitchell
HM
,
Kaakoush
NO
.
Dysbiosis of the microbiome in gastric carcinogenesis
.
Sci Rep
.
2017
;
7
(
1
):
15957
. .
19.
Sohn
S-H
,
Kim
N
,
Jo
HJ
,
Kim
J
,
Park
JH
,
Nam
RH
, et al.
Analysis of gastric body microbiota by pyrosequencing: possible role of bacteria other than Helicobacter pylori in the gastric carcinogenesis
.
J Cancer Prev
.
2017
;
22
(
2
):
115
25
.
20.
Yu
G
,
Torres
J
,
Hu
N
,
Medrano-Guzman
R
,
Herrera-Goepfert
R
,
Humphrys
MS
, et al.
Molecular characterization of the human stomach microbiota in gastric cancer patients
.
Front Cell Infect Microbiol
.
2017
;
7
(
302
):
302
. .
21.
Coker
OO
,
Dai
Z
,
Nie
Y
,
Zhao
G
,
Cao
L
,
Nakatsu
G
, et al.
Mucosal microbiome dysbiosis in gastric carcinogenesis
.
Gut
.
2018
;
67
(
6
):
1024
. .
22.
Hsieh
YY
,
Tung
SY
,
Pan
HY
,
Yen
CW
,
Xu
HW
,
Lin
YJ
, et al.
Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan
.
Sci Rep
.
2018
;
8
(
1
):
158
. .
23.
Hu
YL
,
Pang
W
,
Huang
Y
,
Zhang
Y
,
Zhang
CJ
.
The gastric microbiome is perturbed in advanced gastric adenocarcinoma identified through shotgun metagenomics
.
Front Cell Infect Microbiol
.
2018
;
8
:
433
. .
24.
Chen
XH
,
Wang
A
,
Chu
AN
,
Gong
YH
,
Yuan
Y
.
Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues
.
Front Microbiol
.
2019
;
10
:
1261
. .
25.
Gunathilake
MN
,
Lee
J
,
Choi
IJ
,
Kim
YI
,
Ahn
Y
,
Park
C
, et al.
Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study
.
Sci Rep
.
2019
;
9
(
1
):
13589
. .
26.
Liu
X
,
Shao
L
,
Liu
X
,
Ji
F
,
Mei
Y
,
Cheng
Y
, et al.
Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer
.
EBioMedicine
.
2019
;
40
:
336
48
. .
27.
Correa
P
.
Human gastric carcinogenesis: a multistep and multifactorial process: first American Cancer Society Award lecture on cancer epidemiology and prevention
.
Cancer Res
.
1992
;
52
(
24
):
6735
.
28.
Hooi
JKY
,
Lai
WY
,
Ng
WK
,
Suen
MMY
,
Underwood
FE
,
Tanyingoh
D
, et al.
Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis
.
Gastroenterology
.
2017
;
153
(
2
):
420
9
. .
29.
Assumpção
PP
,
Barra
WF
,
Ishak
G
,
Coelho
LGV
,
Coimbra
FJF
,
Freitas
HC
, et al.
The diffuse-type gastric cancer epidemiology enigma
.
BMC Gastroenterol
.
2020
;
20
(
1
):
223
. .
30.
Beasley
DE
,
Koltz
AM
,
Lambert
JE
,
Fierer
N
,
Dunn
RR
.
The evolution of stomach acidity and its relevance to the human microbiome
.
PLoS One
.
2015
;
10
(
7
):
e0134116
. .
31.
Paroni Sterbini
F
,
Palladini
A
,
Masucci
L
,
Cannistraci
CV
,
Pastorino
R
,
Ianiro
G
, et al.
Effects of proton pump inhibitors on the gastric mucosa-associated microbiota in dyspeptic patients
.
Appl Environ Microbiol
.
2016
;
82
(
22
):
6633
. .
32.
Parsons
BN
,
Ijaz
UZ
,
D’Amore
R
,
Burkitt
MD
,
Eccles
R
,
Lenzi
L
, et al.
Comparison of the human gastric microbiota in hypochlorhydric states arising as a result of Helicobacter pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump inhibitor use
.
PLoS Pathog
.
2017
;
13
(
11
):
e1006653
. .
33.
Tran-Duy
A
,
Spaetgens
B
,
Hoes
AW
,
de Wit
NJ
,
Stehouwer
CD
.
Use of proton pump inhibitors and risks of fundic gland polyps and gastric cancer: systematic review and meta-analysis
.
Clin Gastroenterol Hepatol
.
2016
;
14
(
12
):
1706
e5
. .
34.
Infection with Helicobacter pylori
.
IARC Monogr Eval Carcinog Risks Hum
.
1994
;
61
:
177
240
.
35.
Choi
IJ
,
Kook
MC
,
Kim
YI
,
Cho
SJ
,
Lee
JY
,
Kim
CG
, et al.
Helicobacter pylori therapy for the prevention of metachronous gastric cancer
.
N Engl J Med
.
2018
;
378
(
12
):
1085
95
. .
36.
Choi
IJ
,
Kim
CG
,
Lee
JY
,
Kim
YI
,
Kook
MC
,
Park
B
, et al.
Family history of gastric cancer and Helicobacter pylori treatment
.
N Engl J Med
.
2020
;
382
(
5
):
427
36
. .
37.
Leja
M
,
Grinberga-Derica
I
,
Bilgilier
C
,
Steininger
C
.
Review: epidemiology of Helicobacter pylori infection
.
Helicobacter
.
2019
;
24
(
Suppl 1
):
e12635
. .
38.
Yamamoto
Y
,
Fujisaki
J
,
Omae
M
,
Hirasawa
T
,
Igarashi
M
.
Helicobacter pylori-negative gastric cancer: characteristics and endoscopic findings
.
Dig Endosc
.
2015
;
27
(
5
):
551
61
. .
39.
Gantuya
B
,
El-Serag
HB
,
Matsumoto
T
,
Ajami
NJ
,
Oyuntsetseg
K
,
Azzaya
D
, et al.
Gastric microbiota in Helicobacter pylori-negative and -positive gastritis among high incidence of gastric cancer area
.
Cancers
.
2019
;
11
(
4
):
504
. .
40.
de Assumpcao
PP
,
Dos Santos
SE
,
Dos Santos
AK
,
Demachki
S
,
Khayat
AS
,
Ishak
G
, et al.
The adjacent to tumor sample trap
.
Gastric Cancer
.
2016
;
19
(
3
):
1024
5
.
41.
de Assumpcao
PP
,
Khayat
AS
,
Thomaz Araujo
TM
,
Barra
WF
,
Ishak
G
,
Cruz Ramos
AMP
, et al.
Traps and trumps from adjacent-to-tumor samples in gastric cancer research
.
Chin J Cancer Res
.
2018
;
30
(
5
):
564
7
.
42.
Sherry
S
,
Xiao
C
, editors.
NCBI SRA toolkit technology for next generation sequence data
.
Plant and Animal Genome XX Conference (January 14–18, 2012) Plant and Animal Genome
;
2012
;
San Diego, CA
;
2012
.
43.
Callahan
BJ
,
McMurdie
PJ
,
Rosen
MJ
,
Han
AW
,
Johnson
AJ
,
Holmes
SP
.
DADA2: high-resolution sample inference from Illumina amplicon data
.
Nat Methods
.
2016
;
13
(
7
):
581
3
. .
44.
Rognes
T
,
Flouri
T
,
Nichols
B
,
Quince
C
,
Mahé
F
.
VSEARCH: a versatile open source tool for metagenomics
.
PeerJ
.
2016
;
4
:
e2584
. .
45.
Martinez-Porchas
M
,
Villalpando-Canchola
E
,
Vargas-Albores
F
.
Significant loss of sensitivity and specificity in the taxonomic classification occurs when short 16S rRNA gene sequences are used
.
Heliyon
.
2016
;
2
(
9
):
e00170
.
46.
Segata
N
,
Izard
J
,
Waldron
L
,
Gevers
D
,
Miropolsky
L
,
Garrett
WS
, et al.
Metagenomic biomarker discovery and explanation
.
Genome Biol
.
2011
;
12
(
6
):
R60
. .
47.
Salter
SJ
,
Cox
MJ
,
Turek
EM
,
Calus
ST
,
Cookson
WO
,
Moffatt
MF
, et al.
Reagent and laboratory contamination can critically impact sequence-based microbiome analyses
.
BMC Biol
.
2014
;
12
:
87
. .
48.
Assumpcao
MB
,
Moreira
FC
,
Hamoy
IG
,
Magalhaes
L
,
Vidal
A
,
Pereira
A
, et al.
High-throughput miRNA sequencing reveals a field effect in gastric cancer and suggests an epigenetic network mechanism
.
Bioinform Biol Insights
.
2015
;
9
:
111
7
.
49.
Pereira
A
,
Moreira
F
,
Vinasco-Sandoval
T
,
Cunha
A
,
Vidal
A
,
Ribeiro-Dos-Santos
AM
, et al.
miRNome reveals new insights into the molecular biology of field cancerization in gastric cancer
.
Front Genet
.
2019
;
10
:
592
. .
50.
Tseng
CH
,
Lin
JT
,
Ho
HJ
,
Lai
ZL
,
Wang
CB
,
Tang
SL
, et al.
Gastric microbiota and predicted gene functions are altered after subtotal gastrectomy in patients with gastric cancer
.
Sci Rep
.
2016
;
6
:
20701
. .
51.
Chan
AW
,
Gill
RS
,
Schiller
D
,
Sawyer
MB
.
Potential role of metabolomics in diagnosis and surveillance of gastric cancer
.
World J Gastroenterol
.
2014
;
20
(
36
):
12874
82
. .
52.
Pavlova
NN
,
Thompson
CB
.
The emerging hallmarks of cancer metabolism
.
Cell Metab
.
2016
;
23
(
1
):
27
47
. .
53.
Park
BC
,
Reese
M
,
Tagliabracci
VS
.
Thinking outside of the cell: secreted protein kinases in bacteria, parasites, and mammals
.
IUBMB Life
.
2019
;
71
(
6
):
749
59
. .
54.
Krzyzek
P
,
Grande
R
.
Transformation of Helicobacter pylori into coccoid forms as a challenge for research determining activity of antimicrobial substances
.
Pathogens
.
2020
;
9
(
3
):
184
.
55.
Youssef
O
,
Lahti
L
,
Kokkola
A
,
Karla
T
,
Tikkanen
M
,
Ehsan
H
, et al.
Stool microbiota composition differs in patients with stomach, colon, and rectal neoplasms
.
Dig Dis Sci
.
2018
;
63
(
11
):
2950
8
. .
56.
Liang
W
,
Yang
Y
,
Wang
H
,
Wang
H
,
Yu
X
,
Lu
Y
, et al.
Gut microbiota shifts in patients with gastric cancer in perioperative period
.
Medicine
.
2019
;
98
(
35
):
e16626
. .
57.
Gao
JJ
,
Zhang
Y
,
Gerhard
M
,
Mejias-Luque
R
,
Zhang
L
,
Vieth
M
, et al.
Association between gut microbiota and Helicobacter pylori-related gastric lesions in a high-risk population of gastric cancer
.
Front Cell Infect Microbiol
.
2018
;
8
:
202
. .
58.
Horvath
A
,
Bausys
A
,
Sabaliauskaite
R
,
Stratilatovas
E
,
Jarmalaite
S
,
Schuetz
B
, et al.
Distal gastrectomy with Billroth II reconstruction is associated with oralization of gut microbiome and intestinal inflammation: a proof-of-concept study
.
Ann Surg Oncol
.
2020
. .
59.
Morales-Marroquin
E
,
Hanson
B
,
Greathouse
L
,
de la Cruz-Munoz
N
,
Messiah
SE
.
Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: a systematic review
.
Obes Rev
.
2020
;
21
(
8
):
e13025
. .
60.
Farin
W
,
Oñate
FP
,
Plassais
J
,
Bonny
C
,
Beglinger
C
,
Woelnerhanssen
B
, et al.
Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis
.
Surg Obes Relat Dis
.
2020
;
16
(
7
):
852
62
. .
61.
Zheng
C
,
Chen
T
,
Wang
Y
,
Gao
Y
,
Kong
Y
,
Liu
Z
, et al.
A randomised trial of probiotics to reduce severity of physiological and microbial disorders induced by partial gastrectomy for patients with gastric cancer
.
J Cancer
.
2019
;
10
(
3
):
568
76
. .
62.
Oh
B
,
Kim
BS
,
Kim
JW
,
Kim
JS
,
Koh
SJ
,
Kim
BG
, et al.
The effect of probiotics on gut microbiota during the Helicobacter pylori eradication: randomized controlled trial
.
Helicobacter
.
2016
;
21
(
3
):
165
74
. .
63.
Routy
B
,
Le Chatelier
E
,
Derosa
L
,
Duong
CPM
,
Alou
MT
,
Daillère
R
, et al.
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
.
Science
.
2018
;
359
(
6371
):
91
7
. .
64.
Galli
G
,
Triulzi
T
,
Proto
C
,
Signorelli
D
,
Imbimbo
M
,
Poggi
M
, et al.
Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non-small cell lung cancer
.
Lung Cancer
.
2019
;
132
:
72
8
. .
65.
Poore
GD
,
Kopylova
E
,
Zhu
Q
,
Carpenter
C
,
Fraraccio
S
,
Wandro
S
, et al.
Microbiome analyses of blood and tissues suggest cancer diagnostic approach
.
Nature
.
2020
;
579
(
7800
):
567
74
. .
66.
Wang
Z
,
Gao
X
,
Zeng
R
,
Wu
Q
,
Sun
H
,
Wu
W
, et al.
Changes of the Gastric Mucosal Microbiome Associated With Histological Stages of Gastric Carcinogenesis
.
Front Microbiol
.
2020
;
11
:
997
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.