Transcriptome of papillary thyroid cancer (PTC) is well characterized and correlates with some prognostic and genotypic factors, but data addressing the interaction between PTC and tumor microenvironment (TME) are scarce. Therefore, in the present study, we aimed to assess the impact of TME on gene expression profile in PTC. We evaluated the gene expression profile in PTC and normal thyroid cells isolated by laser capture microdissection and in whole tissue slides corresponding to the entire tumor. We included 26 microdissected samples for gene expression analysis (HG-U133 PLUS 2.0, Affymetrix, currently Thermo Fisher Scientific USA): 15 PTC samples, 11 samples of normal thyrocytes, and 30 whole slides (15 PTC and 15 normal thyroid). Transcripts were divided into three groups: differentially expressed both in microdissected and whole slides, transcripts differently expressed in microdissected samples and not changed in whole slides, and transcripts differentially expressed in whole slides and not changed in microdissected samples. Eleven genes were selected for validation in an independent set of samples; among them, four genes differentiated only microdissected PTC and normal cells. Two genes (PTCSC and CTGF) were confirmed. One gene (FOS) was not confirmed by the validation, whereas EGR1 was also significant in whole slide analysis. The other seven genes (TFF3, FN1, MPPED2, MET, KCNJ2, TACSTD2, and GALE) showed differentiated expression in microdissected thyrocytes and in whole tumor slides. Most of identified genes were related to the tumor-microenvironment interaction and confirmed the crosstalk between TME and cancer cells.

1.
Haugen
BR
,
Alexander
EK
,
Bible
KC
,
Doherty
G
,
Mandel
SJ
,
Nikiforov
YE
, et al.
2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid [Internet]. 2015 Oct 14 [cited 2015 Oct 17];26(1):thy.
2015
.0020.
2.
Rusinek
D
,
Szpak-Ulczok
S
,
Jarzab
B
.
Gene expression profile of human thyroid cancer in relation to its mutational status
.
[Internet]
.
J Mol Endocrinol
.
2011
Nov
;
47
(
3
):
R91
103
. [cited 2018 Jul 9].
[PubMed]
0952-5041
3.
Jarzab
B
,
Wiench
M
,
Fujarewicz
K
,
Simek
K
,
Jarzab
M
,
Oczko-Wojciechowska
M
, et al.
Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications
.
[Internet]
.
Cancer Res
.
2005
Feb
;
65
(
4
):
1587
97
. [cited 2014 Aug 26].
[PubMed]
0008-5472
4.
Agrawal
N
,
Akbani
R
,
Aksoy
BA
,
Ally
A
,
Arachchi
H
,
Asa
SL
, et al.;
Cancer Genome Atlas Research Network
.
Integrated genomic characterization of papillary thyroid carcinoma
.
Cell
.
2014
Oct
;
159
(
3
):
676
90
.
[PubMed]
0092-8674
5.
Niemeier
LA
,
Kuffner Akatsu
H
,
Song
C
,
Carty
SE
,
Hodak
SP
,
Yip
L
, et al.
A combined molecular-pathologic score improves risk stratification of thyroid papillary microcarcinoma
.
[Internet]
.
Cancer
.
2012
Apr
;
118
(
8
):
2069
77
. [cited 2020 Mar 3].
[PubMed]
0008-543X
6.
Han
J
,
Chen
M
,
Wang
Y
,
Gong
B
,
Zhuang
T
,
Liang
L
, et al.
Identification of Biomarkers Based on Differentially Expressed Genes in Papillary Thyroid Carcinoma
.
[Internet]
.
Sci Rep
.
2018
Jul
;
8
(
1
):
9912
. [cited 2020 Mar 3].
[PubMed]
2045-2322
7.
Liu
Y
,
Gao
S
,
Jin
Y
,
Yang
Y
,
Tai
J
,
Wang
S
, et al.
Bioinformatics analysis to screen key genes in papillary thyroid carcinoma
.
[Internet]
.
Oncol Lett
.
2020
Jan
;
19
(
1
):
195
204
. [cited 2020 Mar 3].
[PubMed]
1792-1074
8.
Huang
Y
,
Prasad
M
,
Lemon
WJ
,
Hampel
H
,
Wright
FA
,
Kornacker
K
, et al.
Gene expression in papillary thyroid carcinoma reveals highly consistent profiles
.
[Internet]
.
Proc Natl Acad Sci USA
.
2001
Dec
;
98
(
26
):
15044
9
. [cited 2020 Mar 3].
[PubMed]
0027-8424
9.
Salvatore
G
,
Giannini
R
,
Faviana
P
,
Caleo
A
,
Migliaccio
I
,
Fagin
JA
, et al.
Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma
.
[Internet]
.
J Clin Endocrinol Metab
.
2004
Oct
;
89
(
10
):
5175
80
. [cited 2020 Mar 3].
[PubMed]
0021-972X
10.
Cheung
CC
,
Carydis
B
,
Ezzat
S
,
Bedard
YC
,
Asa
SL
.
Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer
.
[Internet]
.
J Clin Endocrinol Metab
.
2001
May
;
86
(
5
):
2187
90
. [cited 2020 Mar 3].
[PubMed]
0021-972X
11.
Xing
M
,
Tufano
RP
,
Tufaro
AP
,
Basaria
S
,
Ewertz
M
,
Rosenbaum
E
, et al.
Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer
.
[Internet]
.
J Clin Endocrinol Metab
.
2004
Jun
;
89
(
6
):
2867
72
. [cited 2020 Mar 3].
[PubMed]
0021-972X
12.
Hayashida
N
,
Namba
H
,
Kumagai
A
,
Hayashi
T
,
Ohtsuru
A
,
Ito
M
, et al.
A rapid and simple detection method for the BRAF(T1796A) mutation in fine-needle aspirated thyroid carcinoma cells
.
[Internet]
.
Thyroid
.
2004
Nov
;
14
(
11
):
910
5
. [cited 2020 Mar 3].
[PubMed]
1050-7256
13.
Domingues
R
,
Mendonça
E
,
Sobrinho
L
,
Bugalho
MJ
.
Searching for RET/PTC rearrangements and BRAF V599E mutation in thyroid aspirates might contribute to establish a preoperative diagnosis of papillary thyroid carcinoma
.
[Internet]
.
Cytopathology
.
2005
Feb
;
16
(
1
):
27
31
. [cited 2020 Mar 3].
[PubMed]
0956-5507
14.
Cohen
Y
,
Rosenbaum
E
,
Clark
DP
,
Zeiger
MA
,
Umbricht
CB
,
Tufano
RP
, et al.
Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules
.
[Internet]
.
Clin Cancer Res
.
2004
Apr
;
10
(
8
):
2761
5
. [cited 2020 Mar 3].
[PubMed]
1078-0432
15.
Xing
M
,
Alzahrani
AS
,
Carson
KA
,
Shong
YK
,
Kim
TY
,
Viola
D
, et al.
Association between BRAF V600E mutation and recurrence of papillary thyroid cancer
.
[Internet]
.
J Clin Oncol
.
2015
Jan
;
33
(
1
):
42
50
. [cited 2017 Jul 31].
[PubMed]
0732-183X
16.
Xing
M
,
Alzahrani
AS
,
Carson
KA
,
Viola
D
,
Elisei
R
,
Bendlova
B
, et al.
Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer
.
[Internet]
.
JAMA
.
2013
Apr
;
309
(
14
):
1493
501
. [cited 2014 Dec 15].
[PubMed]
0098-7484
17.
Melo
M
,
Gaspar da Rocha
A
,
Batista
R
,
Vinagre
J
,
Martins
MJ
,
Costa
G
, et al.
TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease
.
[Internet]
.
J Clin Endocrinol Metab
.
2017
Jun
;
102
(
6
):
1898
907
. [cited 2019 Mar 12].
[PubMed]
0021-972X
18.
Melo
M
,
da Rocha
AG
,
Vinagre
J
,
Batista
R
,
Peixoto
J
,
Tavares
C
, et al.
TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas
.
[Internet]
.
J Clin Endocrinol Metab
.
2014
May
;
99
(
5
):
E754
65
. [cited 2019 Mar 12].
[PubMed]
0021-972X
19.
Privat-Maldonado
A
,
Bengtson
C
,
Razzokov
J
,
Smits
E
,
Bogaerts
A
.
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments
.
[Internet]
.
Cancers (Basel)
.
2019
Dec
;
11
(
12
):
1920
. [cited 2020 Mar 3].
[PubMed]
2072-6694
20.
Roma-Rodrigues
C
,
Mendes
R
,
Baptista
PV
,
Fernandes
AR
.
Targeting Tumor Microenvironment for Cancer Therapy
.
[Internet]
.
Int J Mol Sci
.
2019
Feb
;
20
(
4
):
840
. [cited 2020 Mar 3].
[PubMed]
1661-6596
21.
De Palma
M
,
Biziato
D
,
Petrova
TV
.
Microenvironmental regulation of tumour angiogenesis
.
[Internet]
.
Nat Rev Cancer
.
2017
Aug
;
17
(
8
):
457
74
. [cited 2020 Mar 3].
[PubMed]
1474-175X
22.
Lim
B
,
Woodward
WA
,
Wang
X
,
Reuben
JM
,
Ueno
NT
.
Inflammatory breast cancer biology: the tumour microenvironment is key
.
[Internet]
.
Nat Rev Cancer
.
2018
Aug
;
18
(
8
):
485
99
. [cited 2020 Mar 3].
[PubMed]
1474-175X
23.
Koirala
P
,
Huang
J
,
Ho
TT
,
Wu
F
,
Ding
X
,
Mo
YY
.
LncRNA AK023948 is a positive regulator of AKT
.
[Internet]
.
Nat Commun
.
2017
Feb
;
8
(
1
):
14422
. [cited 2020 Mar 1].
[PubMed]
2041-1723
24.
He
H
,
Nagy
R
,
Liyanarachchi
S
,
Jiao
H
,
Li
W
,
Suster
S
, et al.
A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24
.
Cancer Res
.
2009
Jan
;
69
(
2
):
625
31
.
[PubMed]
0008-5472
25.
Mansha
M
,
Carlet
M
,
Ploner
C
,
Gruber
G
,
Wasim
M
,
Wiegers
GJ
, et al.
Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia
.
[Internet]
.
Leuk Res
.
2010
Apr
;
34
(
4
):
529
34
. [cited 2020 Mar 1].
[PubMed]
0145-2126
26.
Yang
F
,
Tuxhorn
JA
,
Ressler
SJ
,
McAlhany
SJ
,
Dang
TD
,
Rowley
DR
.
Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis
.
[Internet]
.
Cancer Res
.
2005
Oct
;
65
(
19
):
8887
95
. [cited 2020 Mar 1].
[PubMed]
0008-5472
27.
Frazier
K
,
Williams
S
,
Kothapalli
D
,
Klapper
H
,
Grotendorst
GR
.
Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor
.
[Internet]
.
J Invest Dermatol
.
1996
Sep
;
107
(
3
):
404
11
. [cited 2020 Mar 1].
[PubMed]
0022-202X
28.
Trinh
NT
,
Yamashita
T
,
Ohneda
K
,
Kimura
K
,
Salazar
GT
,
Sato
F
, et al.
Increased Expression of EGR-1 in Diabetic Human Adipose Tissue-Derived Mesenchymal Stem Cells Reduces Their Wound Healing Capacity
.
[Internet]
.
Stem Cells Dev
.
2016
May
;
25
(
10
):
760
73
. [cited 2020 Mar 1].
[PubMed]
1547-3287
29.
Jin
S
,
Borkhuu
O
,
Bao
W
,
Yang
YT
.
Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications
.
[Internet]
.
J Clin Med Res
.
2016
Apr
;
8
(
4
):
284
96
. [cited 2020 Mar 1].
[PubMed]
1918-3003
30.
Burrows
N
,
Resch
J
,
Cowen
RL
,
von Wasielewski
R
,
Hoang-Vu
C
,
West
CM
, et al.
Expression of hypoxia-inducible factor 1 alpha in thyroid carcinomas
.
[Internet]
.
Endocr Relat Cancer
.
2010
Jan
;
17
(
1
):
61
72
. [cited 2020 Mar 1].
[PubMed]
1351-0088
31.
Matsumoto
K
,
Horikoshi
M
,
Rikimaru
K
,
Enomoto
S
.
A study of an in vitro model for invasion of oral squamous cell carcinoma
.
[Internet]
.
J Oral Pathol Med
.
1989
Oct
;
18
(
9
):
498
501
. [cited 2020 Mar 1].
[PubMed]
0904-2512
32.
Matsumoto
K
,
Matsumoto
K
,
Nakamura
T
,
Kramer
RH
.
Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells
.
[Internet]
.
J Biol Chem
.
1994
Dec
;
269
(
50
):
31807
13
. [cited 2020 Mar 1].
[PubMed]
0021-9258
33.
Matsumoto
K
,
Date
K
,
Shimura
H
,
Nakamura
T
.
Acquisition of invasive phenotype in gallbladder cancer cells via mutual interaction of stromal fibroblasts and cancer cells as mediated by hepatocyte growth factor
.
[Internet]
.
Jpn J Cancer Res
.
1996
Jul
;
87
(
7
):
702
10
. [cited 2020 Mar 1].
[PubMed]
0910-5050
34.
Nakamura
T
,
Matsumoto
K
,
Kiritoshi
A
,
Tano
Y
,
Nakamura
T
.
Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions
.
[Internet]
.
Cancer Res
.
1997
Aug
;
57
(
15
):
3305
13
. [cited 2020 Mar 1].
[PubMed]
0008-5472
35.
Date
K
,
Matsumoto
K
,
Kuba
K
,
Shimura
H
,
Tanaka
M
,
Nakamura
T
.
Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor
.
[Internet]
.
Oncogene
.
1998
Dec
;
17
(
23
):
3045
54
. [cited 2020 Mar 1].
[PubMed]
0950-9232
36.
Matsumoto-Taniura
N
,
Matsumoto
K
,
Nakamura
T
.
Prostaglandin production in mouse mammary tumour cells confers invasive growth potential by inducing hepatocyte growth factor in stromal fibroblasts
.
[Internet]
.
Br J Cancer
.
1999
Sep
;
81
(
2
):
194
202
. [cited 2020 Mar 1].
[PubMed]
0007-0920
37.
Pennacchietti
S
,
Michieli
P
,
Galluzzo
M
,
Mazzone
M
,
Giordano
S
,
Comoglio
PM
.
Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene
.
[Internet]
.
Cancer Cell
.
2003
Apr
;
3
(
4
):
347
61
. [cited 2020 Mar 1].
[PubMed]
1535-6108
38.
Scarpino
S
,
Cancellario d’Alena
F
,
Di Napoli
A
,
Pasquini
A
,
Marzullo
A
,
Ruco
LP
.
Increased expression of Met protein is associated with up-regulation of hypoxia inducible factor-1 (HIF-1) in tumour cells in papillary carcinoma of the thyroid
.
[Internet]
.
J Pathol
.
2004
Mar
;
202
(
3
):
352
8
. [cited 2020 Mar 1].
[PubMed]
0022-3417
39.
Jones
TR
,
Ruoslahti
E
,
Schold
SC
,
Bigner
DD
.
Fibronectin and glial fibrillary acidic protein expression in normal human brain and anaplastic human gliomas
.
[Internet]
.
Cancer Res
.
1982
Jan
;
42
(
1
):
168
77
. [cited 2020 Mar 1].
[PubMed]
0008-5472
40.
Zhang
B
,
Shen
S
,
Liao
Z
,
Shi
W
,
Wang
Y
,
Zhao
J
, et al.
Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles
.
[Internet]
.
Biomaterials
.
2014
Apr
;
35
(
13
):
4088
98
. [cited 2020 Mar 1].
[PubMed]
0142-9612
41.
Xiao
J
,
Yang
W
,
Xu
B
,
Zhu
H
,
Zou
J
,
Su
C
, et al.
Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration
.
[Internet]
.
BMC Cancer
.
2018
Oct
;
18
(
1
):
976
. [cited 2020 Mar 1].
[PubMed]
1471-2407
42.
Griffith
OL
,
Melck
A
,
Jones
SJ
,
Wiseman
SM
.
Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers
.
[Internet]
.
J Clin Oncol
.
2006
Nov
;
24
(
31
):
5043
51
. [cited 2020 Mar 1].
[PubMed]
0732-183X
43.
Fujarewicz
K
,
Jarzab
M
,
Eszlinger
M
,
Krohn
K
,
Paschke
R
,
Oczko-Wojciechowska
M
, et al.
A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping
.
[Internet]
.
Endocr Relat Cancer
.
2007
Sep
;
14
(
3
):
809
26
. [cited 2014 Aug 25].
[PubMed]
1351-0088
44.
Finley
DJ
,
Arora
N
,
Zhu
B
,
Gallagher
L
,
Fahey
TJ
 3rd
.
Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules
.
[Internet]
.
J Clin Endocrinol Metab
.
2004
Jul
;
89
(
7
):
3214
23
. [cited 2020 Mar 1].
[PubMed]
0021-972X
45.
Hawthorn
L
,
Stein
L
,
Varma
R
,
Wiseman
S
,
Loree
T
,
Tan
D
.
TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma
.
[Internet]
.
Head Neck
.
2004
Dec
;
26
(
12
):
1069
83
. [cited 2020 Mar 1].
[PubMed]
1043-3074
46.
Liu
YY
,
Morreau
H
,
Kievit
J
,
Romijn
JA
,
Carrasco
N
,
Smit
JW
.
Combined immunostaining with galectin-3, fibronectin-1, CITED-1, Hector Battifora mesothelial-1, cytokeratin-19, peroxisome proliferator-activated receptor-{gamma}, and sodium/iodide symporter antibodies for the differential diagnosis of non-medullary thyroid carcinoma
.
[Internet]
.
Eur J Endocrinol
.
2008
Mar
;
158
(
3
):
375
84
. [cited 2020 Mar 1].
[PubMed]
0804-4643
47.
Li
G
,
Satyamoorthy
K
,
Meier
F
,
Berking
C
,
Bogenrieder
T
,
Herlyn
M
.
Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil
.
[Internet]
.
Oncogene
.
2003
May
;
22
(
20
):
3162
71
. [cited 2020 Mar 1].
[PubMed]
0950-9232
48.
Noel
A
,
Kebers
F
,
Maquoi
E
,
Foidart
JM
.
Cell-cell and cell-matrix interactions during breast cancer progression
.
[Internet]
.
Curr Top Pathol
.
1999
;
93
:
183
93
. [cited 2020 Mar 1].
[PubMed]
0070-2188
49.
Mueller
MM
,
Fusenig
NE
.
Friends or foes - bipolar effects of the tumour stroma in cancer
.
[Internet]
.
Nat Rev Cancer
.
2004
Nov
;
4
(
11
):
839
49
. [cited 2020 Mar 1].
[PubMed]
1474-175X
50.
Thiery
JP
,
Acloque
H
,
Huang
RY
,
Nieto
MA
.
Epithelial-mesenchymal transitions in development and disease
.
[Internet]
.
Cell
.
2009
Nov
;
139
(
5
):
871
90
. [cited 2020 Mar 1].
[PubMed]
0092-8674
51.
Kalluri
R
,
Weinberg
RA
.
The basics of epithelial-mesenchymal transition
.
[Internet]
.
J Clin Invest
.
2009
Jun
;
119
(
6
):
1420
8
. [cited 2020 Mar 2].
[PubMed]
0021-9738
52.
Wang
J
,
Day
R
,
Dong
Y
,
Weintraub
SJ
,
Michel
L
.
Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers
.
[Internet]
.
Mol Cancer Ther
.
2008
Feb
;
7
(
2
):
280
5
. [cited 2020 Mar 2].
[PubMed]
1535-7163
53.
McDougall
AR
,
Tolcos
M
,
Hooper
SB
,
Cole
TJ
,
Wallace
MJ
.
Trop2: from development to disease
.
[Internet]
.
Dev Dyn
.
2015
Feb
;
244
(
2
):
99
109
. [cited 2020 Mar 2].
[PubMed]
1058-8388
54.
Wang
J
,
Zhang
K
,
Grabowska
D
,
Li
A
,
Dong
Y
,
Day
R
, et al.
Loss of Trop2 promotes carcinogenesis and features of epithelial to mesenchymal transition in squamous cell carcinoma
.
[Internet]
.
Mol Cancer Res
.
2011
Dec
;
9
(
12
):
1686
95
. [cited 2020 Mar 2].
[PubMed]
1541-7786
55.
Hibino
H
,
Inanobe
A
,
Furutani
K
,
Murakami
S
,
Findlay
I
,
Kurachi
Y
.
Inwardly rectifying potassium channels: their structure, function, and physiological roles
.
[Internet]
.
Physiol Rev
.
2010
Jan
;
90
(
1
):
291
366
. [cited 2020 Mar 2].
[PubMed]
0031-9333
56.
Takano
T
,
Yamada
H
.
Trefoil factor 3 (TFF3): a promising indicator for diagnosing thyroid follicular carcinoma
.
[Internet]
.
Endocr J
.
2009
;
56
(
1
):
9
16
. [cited 2020 Mar 2].
[PubMed]
0918-8959
57.
Sepe
R
,
Pellecchia
S
,
Serra
P
,
D’Angelo
D
,
Federico
A
,
Raia
M
, et al.
The Long Non-Coding RNA RP5-1024C24.1 and Its Associated-Gene MPPED2 Are Down-Regulated in Human Thyroid Neoplasias and Act as Tumour Suppressors
.
[Internet]
.
Cancers (Basel)
.
2018
May
;
10
(
5
):
146
. [cited 2020 Mar 2].
[PubMed]
2072-6694
58.
Nikolova
DN
,
Zembutsu
H
,
Sechanov
T
,
Vidinov
K
,
Kee
LS
,
Ivanova
R
, et al.
Genome-wide gene expression profiles of thyroid carcinoma: identification of molecular targets for treatment of thyroid carcinoma
.
[Internet]
.
Oncol Rep
.
2008
Jul
;
20
(
1
):
105
21
. [cited 2020 Mar 2].
[PubMed]
1021-335X
59.
McCarthy
RP
,
Wang
M
,
Jones
TD
,
Strate
RW
,
Cheng
L
.
Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas
.
[Internet]
.
Clin Cancer Res
.
2006
Apr
;
12
(
8
):
2414
8
. [cited 2020 Mar 3].
[PubMed]
1078-0432
60.
Gasbarri
A
,
Sciacchitano
S
,
Marasco
A
,
Papotti
M
,
Di Napoli
A
,
Marzullo
A
, et al.
Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto’s thyroiditis
.
[Internet]
.
Br J Cancer
.
2004
Sep
;
91
(
6
):
1096
104
. [cited 2020 Mar 3].
[PubMed]
0007-0920
61.
Finn
S
,
Smyth
P
,
O’Regan
E
,
Cahill
S
,
Toner
M
,
Timon
C
, et al.
Low-level genomic instability is a feature of papillary thyroid carcinoma: an array comparative genomic hybridization study of laser capture microdissected papillary thyroid carcinoma tumors and clonal cell lines
.
[Internet]
.
Arch Pathol Lab Med
.
2007
Jan
;
131
(
1
):
65
73
. [cited 2020 Mar 3].
[PubMed]
1543-2165
62.
Bongiovanni
M
,
Molinari
F
,
Eszlinger
M
,
Paschke
R
,
Barizzi
J
,
Merlo
E
, et al.
Laser capture microdissection is a valuable tool in the preoperative molecular screening of follicular lesions of the thyroid: an institutional experience
.
[Internet]
.
Cytopathology
.
2015
Oct
;
26
(
5
):
288
96
. [cited 2020 Mar 3].
[PubMed]
0956-5507
63.
Tallini
G
,
Brandao
G
. Assessment of RET/PTC Oncogene Activation in Thyroid Nodules Utilizing Laser Microdissection Followed by Nested RT-PCR.
Laser Capture Microdissection
[
Internet
]
Totowa (NJ)
:
Humana Press
;
2005
. pp.
103
12
. [ [cited 2020 Mar 3]].
64.
Guo
S
,
Deng
CX
.
Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation
.
[Internet]
.
Int J Biol Sci
.
2018
Nov
;
14
(
14
):
2083
93
. [cited 2020 Mar 3].
[PubMed]
1449-2288
65.
Cunha
LL
,
Marcello
MA
,
Ward
LS
.
The role of the inflammatory microenvironment in thyroid carcinogenesis
.
[Internet]
.
Endocr Relat Cancer
.
2014
Apr
;
21
(
3
):
R85
103
. [cited 2020 Mar 3].
[PubMed]
1351-0088
66.
Ferrari
SM
,
Fallahi
P
,
Galdiero
MR
,
Ruffilli
I
,
Elia
G
,
Ragusa
F
, et al.
Immune and Inflammatory Cells in Thyroid Cancer Microenvironment
.
[Internet]
.
Int J Mol Sci
.
2019
Sep
;
20
(
18
):
4413
. [cited 2020 Mar 3].
[PubMed]
1661-6596
67.
Touyz
RM
,
Alves-Lopes
R
,
Rios
FJ
,
Camargo
LL
,
Anagnostopoulou
A
,
Arner
A
, et al.
Vascular smooth muscle contraction in hypertension
.
[Internet]
.
Cardiovasc Res
.
2018
Mar
;
114
(
4
):
529
39
. [cited 2020 Mar 3].
[PubMed]
0008-6363
68.
Rittirsch
D
,
Flierl
MA
,
Ward
PA
.
Harmful molecular mechanisms in sepsis
.
[Internet]
.
Nat Rev Immunol
.
2008
Oct
;
8
(
10
):
776
87
. [cited 2020 Mar 3].
[PubMed]
1474-1733
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.