Background: Mitochondrial transcription factor A (TFAM) plays multiple pathophysiologic roles in mitochondrial DNA (mtDNA) maintenance. However, the role of TFAM in sepsis-induced acute kidney injury (AKI) remains largely unknown. Methods: Lipopolysaccharide (LPS) treatment of HK-2 cells mimics the in vitro model of AKI inflammation. pcDNA3.1 plasmid was used to construct pcDNA3.1-TFAM. sh-TFAM-543, sh-TFAM-717, sh-TFAM-765, sh-TFAM-904 and pcDNA3.1-TFAM were transfected into HK-2 cells using Lipofectamine 2000. MtDNA transcriptional levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was performed to assess the cell viability. Changes in reactive oxygen species (ROS) and mitochondrial membrane potential in HK-2 cells were detected using the corresponding kits. Immunofluorescence experiment was used to investigate the displacement of TFAM. mRNA and protein expression levels of TFAM and its related genes were measured by qRT-PCR and western blot respectively. Mice in sepsis were administered cecal ligation and puncture surgery. Results: LPS treatment was a non-lethal influencing factor, leading to the upregulation of ROS levels and downregulation of mtDNA copy number and NADH dehydrogenase subunit-1 (ND1) expression, and caused damage to the mitochondria. As the LPS treatment time increased, TFAM was displaced from the periphery of the nucleus to cytoplasm. TFAM reduced ROS and P38MAPK levels by inhibiting toll-like receptor 4 (TLR4) expression, ultimately inhibiting inflammation and repairing mtDNA. Conclusions: Our results indicate that TFAM repairs mtDNA by blocking the TLR4/ROS/P38MAPK signaling pathway in inflammatory cells, thereby repairing septic tubular epithelial cells, and TFAM may serve as a new target for sepsis therapy.

1.
Singer
M
,
Deutschman
CS
,
Seymour
CW
,
Shankar-Hari
M
,
Annane
D
,
Bauer
M
, et al
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
.
JAMA
.
2016
Feb
;
315
(
8
):
801
10
.
[PubMed]
0098-7484
2.
Timsit
JF
,
Ruppe
E
,
Ferrer
R
.
Focus on sepsis: new concepts and findings in sepsis care
.
Intensive Care Med
.
2018
Nov
;
44
(
11
):
1997
9
.
[PubMed]
0342-4642
3.
Gómez
H
,
Kellum
JA
.
Sepsis-induced acute kidney injury
.
Curr Opin Crit Care
.
2016
Dec
;
22
(
6
):
546
53
.
[PubMed]
1070-5295
4.
Suzuki
T
,
Yamaguchi
H
,
Kikusato
M
,
Hashizume
O
,
Nagatoishi
S
,
Matsuo
A
, et al
Mitochonic Acid 5 Binds Mitochondria and Ameliorates Renal Tubular and Cardiac Myocyte Damage
.
J Am Soc Nephrol
.
2016
Jul
;
27
(
7
):
1925
32
.
[PubMed]
1046-6673
5.
Yang
J
,
Wu
F
,
Chen
J
,
Yang
Y
.
[Screening of mitochondrial DNA damage repair genes in rats with septic acute kidney injury]
.
Zhejiang Da Xue Xue Bao Yi Xue Ban
.
2018
Jan
;
47
(
1
):
41
50
.
[PubMed]
1008-9292
6.
Hu
,
Q.
, et al
Urinary Mitochondrial DNA Identifies Renal Dysfunction and Mitochondrial Damage in Sepsis-Induced Acute Kidney Injury.
Oxid Med Cell Longev 2018, 8074936, doi: (
2018
).
7.
Cheng
W
,
Zhao
F
,
Tang
CY
,
Li
XW
,
Luo
M
,
Duan
SB
.
Comparison of iohexol and iodixanol induced nephrotoxicity, mitochondrial damage and mitophagy in a new contrast-induced acute kidney injury rat model
.
Arch Toxicol
.
2018
Jul
;
92
(
7
):
2245
57
.
[PubMed]
0340-5761
8.
Bonora
M
,
Pinton
P
.
Mitochondrial DNA keeps you young
.
Cell Death Dis
.
2018
Sep
;
9
(
10
):
992
.
[PubMed]
2041-4889
9.
Kauppila
TE
,
Bratic
A
,
Jensen
MB
,
Baggio
F
,
Partridge
L
,
Jasper
H
, et al
Mutations of mitochondrial DNA are not major contributors to aging of fruit flies
.
Proc Natl Acad Sci USA
.
2018
Oct
;
115
(
41
):
E9620
9
.
[PubMed]
0027-8424
10.
Martin
L
,
Thiemermann
C
.
Mitochondrial DNA in Acute Kidney Injury: chicken or Egg?
Shock
.
2018
Mar
;
49
(
3
):
352
3
.
[PubMed]
1073-2322
11.
Giordano
L
,
Deceglie
S
,
d’Adamo
P
,
Valentino
ML
,
La Morgia
C
,
Fracasso
F
, et al
Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways
.
Cell Death Dis
.
2015
Dec
;
6
(
12
):
e2021
.
[PubMed]
2041-4889
12.
Dong
X
,
Ghoshal
K
,
Majumder
S
,
Yadav
SP
,
Jacob
ST
.
Mitochondrial transcription factor A and its downstream targets are up-regulated in a rat hepatoma
.
J Biol Chem
.
2018
Aug
;
293
(
33
):
12947
.
[PubMed]
0021-9258
13.
Kang
D
,
Kim
SH
,
Hamasaki
N
.
Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions
.
Mitochondrion
.
2007
Feb-Apr
;
7
(
1-2
):
39
44
.
[PubMed]
1567-7249
14.
Vasileiou
PV
,
Mourouzis
I
,
Pantos
C
.
Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity
.
Int J Mol Sci
.
2017
Aug
;
18
(
8
):
E1821
.
[PubMed]
1661-6596
15.
Kunkel
GH
,
Chaturvedi
P
,
Tyagi
SC
.
Mitochondrial pathways to cardiac recovery: TFAM
.
Heart Fail Rev
.
2016
Sep
;
21
(
5
):
499
517
.
[PubMed]
1382-4147
16.
Diebold
I
,
Hennigs
JK
,
Miyagawa
K
,
Li
CG
,
Nickel
NP
,
Kaschwich
M
, et al
BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension
.
Cell Metab
.
2015
Apr
;
21
(
4
):
596
608
.
[PubMed]
1550-4131
17.
Maiden
MJ
,
Otto
S
,
Brealey
JK
,
Finnis
ME
,
Chapman
MJ
,
Kuchel
TR
, et al
Structure and Function of the Kidney in Septic Shock. A Prospective Controlled Experimental Study
.
Am J Respir Crit Care Med
.
2016
Sep
;
194
(
6
):
692
700
.
[PubMed]
1073-449X
18.
Toma
A
,
Stone
A
,
Green
RS
,
Gray
S
.
Steroids for patients in septic shock: the results of the CORTICUS trial
.
CJEM
.
2011
Jul
;
13
(
4
):
273
6
.
[PubMed]
1481-8035
19.
Mesotten
D
,
Gielen
M
,
Sterken
C
,
Claessens
K
,
Hermans
G
,
Vlasselaers
D
, et al
Neurocognitive development of children 4 years after critical illness and treatment with tight glucose control: a randomized controlled trial
.
JAMA
.
2012
Oct
;
308
(
16
):
1641
50
.
[PubMed]
0098-7484
20.
Chon
GR
,
Chang
JW
,
Huh
JW
,
Lim
CM
,
Koh
Y
,
Park
SK
, et al
A comparison of the time from sepsis to inception of continuous renal replacement therapy versus RIFLE criteria in patients with septic acute kidney injury
.
Shock
.
2012
Jul
;
38
(
1
):
30
6
.
[PubMed]
1073-2322
21.
McCall
CE
,
Zabalawi
M
,
Liu
T
,
Martin
A
,
Long
DL
,
Buechler
NL
, et al
Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival
.
JCI Insight
.
2018
Aug
;
3
(
15
):
99292
.
[PubMed]
2379-3708
22.
Yao
X
,
Carlson
D
,
Sun
Y
,
Ma
L
,
Wolf
SE
,
Minei
JP
, et al
Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model
.
PLoS One
.
2015
Oct
;
10
(
10
):
e0139416
.
[PubMed]
1932-6203
23.
Liang
D
,
Huang
A
,
Jin
Y
,
Lin
M
,
Xia
X
,
Chen
X
, et al
Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice
.
Am J Transl Res
.
2018
May
;
10
(
5
):
1422
30
.
[PubMed]
1943-8141
24.
Li
,
S.
, et al
A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxid Med Cell Longev 2018, 3537609, doi: (
2018
).
25.
Stone
OA
,
El-Brolosy
M
,
Wilhelm
K
,
Liu
X
,
Romão
AM
,
Grillo
E
, et al
Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells
.
Nat Commun
.
2018
Oct
;
9
(
1
):
4077
.
[PubMed]
2041-1723
26.
Banoth
B
,
Cassel
SL
.
Mitochondria in innate immune signaling
.
Transl Res
.
2018
Dec
;
202
:
52
68
.
[PubMed]
1931-5244
27.
Bohr
VA
.
Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells
.
Free Radic Biol Med
.
2002
May
;
32
(
9
):
804
12
.
[PubMed]
0891-5849
28.
Hill
S
,
Sataranatarajan
K
,
Remmen
HV
.
Role of Signaling Molecules in Mitochondrial Stress Response
.
Front Genet
.
2018
Jul
;
9
:
225
.
[PubMed]
1664-8021
29.
Farmer
T
,
Naslavsky
N
,
Caplan
S
.
Tying trafficking to fusion and fission at the mighty mitochondria
.
Traffic
.
2018
Aug
;
19
(
8
):
569
77
.
[PubMed]
1398-9219
30.
Stanzani
G
,
Duchen
MR
,
Singer
M
.
The role of mitochondria in sepsis-induced cardiomyopathy
.
Biochim Biophys Acta Mol Basis Dis
.
2018
;
[PubMed]
0925-4439
31.
Chen
JF
,
Liu
H
,
Ni
HF
,
Lv
LL
,
Zhang
MH
,
Zhang
AH
, et al
Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats
.
PLoS One
.
2013
Dec
;
8
(
12
):
e83593
.
[PubMed]
1932-6203
32.
Nicholls
TJ
,
Gustafsson
CM
.
Separating and Segregating the Human Mitochondrial Genome
.
Trends Biochem Sci
.
2018
Nov
;
43
(
11
):
869
81
.
[PubMed]
0968-0004
33.
Gangelhoff
TA
,
Mungalachetty
PS
,
Nix
JC
,
Churchill
ME
.
Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A
.
Nucleic Acids Res
.
2009
Jun
;
37
(
10
):
3153
64
.
[PubMed]
0305-1048
34.
Lyonnais
S
,
Tarrés-Solé
A
,
Rubio-Cosials
A
,
Cuppari
A
,
Brito
R
,
Jaumot
J
, et al
The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein
.
Sci Rep
.
2017
Mar
;
7
(
1
):
43992
.
[PubMed]
2045-2322
35.
Chen
XJ
,
Butow
RA
.
The organization and inheritance of the mitochondrial genome
.
Nat Rev Genet
.
2005
Nov
;
6
(
11
):
815
25
.
[PubMed]
1471-0056
36.
Yoshida
Y
,
Izumi
H
,
Torigoe
T
,
Ishiguchi
H
,
Itoh
H
,
Kang
D
, et al
P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA
.
Cancer Res
.
2003
Jul
;
63
(
13
):
3729
34
.
[PubMed]
0008-5472
37.
Canugovi
C
,
Maynard
S
,
Bayne
AC
,
Sykora
P
,
Tian
J
,
de Souza-Pinto
NC
, et al
The mitochondrial transcription factor A functions in mitochondrial base excision repair
.
DNA Repair (Amst)
.
2010
Oct
;
9
(
10
):
1080
9
.
[PubMed]
1568-7864
38.
Hayashi
Y
,
Yoshida
M
,
Yamato
M
,
Ide
T
,
Wu
Z
,
Ochi-Shindou
M
, et al
Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice
.
J Neurosci
.
2008
Aug
;
28
(
34
):
8624
34
.
[PubMed]
0270-6474
39.
Suarez
J
,
Hu
Y
,
Makino
A
,
Fricovsky
E
,
Wang
H
,
Dillmann
WH
.
Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes
.
Am J Physiol Cell Physiol
.
2008
Dec
;
295
(
6
):
C1561
8
.
[PubMed]
0363-6143
40.
Bosmann
M
,
Ward
PA
.
The inflammatory response in sepsis
.
Trends Immunol
.
2013
Mar
;
34
(
3
):
129
36
.
[PubMed]
1471-4906
41.
Kay
E
,
Scotland
RS
,
Whiteford
JR
.
Toll-like receptors: role in inflammation and therapeutic potential
.
Biofactors
.
2014
May-Jun
;
40
(
3
):
284
94
.
[PubMed]
0951-6433
42.
Crouser
ED
,
Shao
G
,
Julian
MW
,
Macre
JE
,
Shadel
GS
,
Tridandapani
S
, et al
Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors
.
Crit Care Med
.
2009
Jun
;
37
(
6
):
2000
9
.
[PubMed]
0090-3493
43.
Nakanishi
H
,
Hayashi
Y
,
Wu
Z
.
The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior
.
Neuron Glia Biol
.
2011
Feb
;
7
(
1
):
17
23
.
[PubMed]
1740-925X
44.
Hsieh
YY
,
Shen
CH
,
Huang
WS
,
Chin
CC
,
Kuo
YH
,
Hsieh
MC
, et al
Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells
.
J Biomed Sci
.
2014
Jun
;
21
(
1
):
59
.
[PubMed]
1021-7770
45.
Yoshino
M
,
Naka
A
,
Sakamoto
Y
,
Shibasaki
A
,
Toh
M
,
Tsukamoto
S
, et al
Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells
.
J Nutr Biochem
.
2015
Nov
;
26
(
11
):
1193
9
.
[PubMed]
0955-2863
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.