Bone and soft-tissue tumors are in general rare. Diagnosing these tumors is challenging based on the significant number of different tumor entities, the rareness of these tumors, and the considerable morphological heterogeneity which can be found within a single tumor entity. Considering that more than half of the described soft-tissue tumors and approximately 25% of the bone tumors harbor recurrent genetic alterations, the use of auxiliary molecular examinations should be strongly considered. Molecular analyses are important to confirm the diagnosis, to guide treatment, to provide information about prognosis, and to allow patient recruitment for basket trials based on the molecular signature of a tumor. In addition, novel molecular alterations detected by next-generation sequencing (NGS) obtain further insights into the pathogenesis of these rare tumors and allow a more detailed genetic classification. Based on our single-center results of NGS using the Ion AmpliSeq Cancer Hotspot Panel v2 and the Ion AmpliSeq Comprehensive Cancer Panel (Thermo Fisher Scientific) for mutational analyses as well as the Archer FusionPlex Sarcoma Kit (ArcherDX, Inc) to detect gene fusions in 26 genes since early 2016, we have experienced NGS as a very sensitive method to detect genetic alterations. In our experience, the use of the Archer FusionPlex Sarcoma Kit is superior to fluorescent in situ hybridization as an auxiliary tool in the routine workup of soft-tissue and bone tumors.

1.
Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F: WHO Classification of Tumours of Soft Tissue and Bone, ed 4. Lyon, IARC Press, 2013, p 468.
4.
Weaver J, Downs-Kelly E, Goldblum JR, Turner S, Kulkarni S, Tubbs RR, et al: Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol 2008;21:943-949.
5.
Huang SC, Zhang L, Sung YS, Chen CL, Kao YC, Agaram NP, et al: Secondary EWSR1 gene abnormalities in SMARCB1-deficient tumors with 22q11-12 regional deletions: Potential pitfalls in interpreting EWSR1 FISH results. Genes Chromosomes Cancer 2016; 55:767-776.
6.
Jain S, Xu R, Prieto VG, Lee P: Molecular classification of soft tissue sarcomas and its clinical applications. Int J Clin Exp Pathol 2010;3:416-428.
7.
Marino-Enriquez A, Bovee JV: Molecular pathogenesis and diagnostic, prognostic and predictive molecular markers in sarcoma. Surg Pathol Clin 2016;9:457-473.
8.
Cleven AH, Briaire-de Bruijn I, Szuhai K, Bovee JV: DOG1 expression in giant-cell-containing bone tumours. Histopathology 2016;68:942-945.
9.
Konishi E, Nakashima Y, Iwasa Y, Nakao R, Yanagisawa A: Immunohistochemical analysis for Sox9 reveals the cartilaginous character of chondroblastoma and chondromyxoid fibroma of the bone. Hum Pathol 2010;41:208-213.
10.
Lin G, Doyle LA: An update on the application of newly described immunohistochemical markers in soft tissue pathology. Arch Pathol Lab Med 2015;139:106-121.
11.
Maues De Paula A, Vasiljevic A, Giorgi R, Gomez-Brouchet A, Aubert S, Leroy X, et al: A diagnosis of giant cell-rich tumour of bone is supported by p63 immunohistochemistry, when more than 50% of cells is stained. Virchows Arch 2014;465:487-494.
12.
Presneau N, Baumhoer D, Behjati S, Pillay N, Tarpey P, Campbell PJ, et al: Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J Pathol Clin Res 2015;1:113-123.
13.
Cleven AH, Hocker S, Briaire-de Bruijn I, Szuhai K, Cleton-Jansen AM, Bovee JV: Mutation analysis of H3F3A and H3F3B as a diagnostic tool for giant cell tumor of bone and chondroblastoma. Am J Surg Pathol 2015;39:1576-1583.
14.
Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, et al: Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 2013;45:1479-1482.
15.
Sarungbam J, Agaram N, Hwang S, Lu C, Wang L, Healey J, et al: Symplastic/pseudoanaplastic giant cell tumor of the bone. Skeletal Radiol 2016;45:929-935.
16.
Panoutsakopoulos G, Pandis N, Kyriazoglou I, Gustafson P, Mertens F, Mandahl N: Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts. Genes Chromosomes Cancer 1999;26:265-266.
17.
Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, et al: Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:3419-3426.
18.
Kim MJ, Cho KJ, Ayala AG, Ro JY: Chondrosarcoma: with updates on molecular genetics. Sarcoma 2011;2011:405437.
19.
Pansuriya TC, van Eijk R, d'Adamo P, van Ruler MA, Kuijjer ML, Oosting J, et al: Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 2011;43:1256-1261.
20.
Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, et al: IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 2011;224:334-343.
21.
Jour G, Liu Y, Ricciotti R, Pritchard C, Hoch BL: Glandular differentiation in dedifferentiated chondrosarcoma: molecular evidence of a rare phenomenon. Hum Pathol 2015;46:1398-1404.
22.
Kerr DA, Lopez HU, Deshpande V, Hornicek FJ, Duan Z, Zhang Y, et al: Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am J Surg Pathol 2013;37:787-795.
23.
Stein EM: Molecular pathways: IDH2 mutations-co-opting cellular metabolism for malignant transformation. Clin Cancer Res 2016;22:16-19.
24.
Speetjens FM, de Jong Y, Gelderblom H, Bovee JV: Molecular oncogenesis of chondrosarcoma: impact for targeted treatment. Curr Opin Oncol 2016;28:314-322.
25.
Tinoco G, Wilky BA, Paz-Mejia A, Rosenberg A, Trent JC: The biology and management of cartilaginous tumors: a role for targeting isocitrate dehydrogenase. Am Soc Clin Oncol Educ Book 2015:e648-e655.
26.
Yoshida A, Ushiku T, Motoi T, Shibata T, Beppu Y, Fukayama M, et al: Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol 2010;23:1279-1288.
27.
Salinas-Souza C, De Andrea C, Bihl M, Kovac M, Pillay N, Forshew T, et al: GNAS mutations are not detected in parosteal and low-grade central osteosarcomas. Mod Pathol 2015;28:1336-1342.
28.
Doyle LA, Wong KK, Bueno R, Dal Cin P, Fletcher JA, Sholl LM, et al: Ewing sarcoma mimicking atypical carcinoid tumor: detection of unexpected genomic alterations demonstrates the use of next generation sequencing as a diagnostic tool. Cancer Genet 2014;207:335-339.
29.
Szuhai K, Cleton-Jansen AM, Hogendoorn PC, Bovee JV: Molecular pathology and its diagnostic use in bone tumors. Cancer Genet 2012;205:193-204.
30.
Machado I, Navarro S, Llombart-Bosch A: Ewing sarcoma and the new emerging Ewing-like sarcomas: (CIC and BCOR-rearranged-sarcomas). A systematic review. Histol Histopathol 2016;31:1169-1181.
31.
Chebib I, Jo VY: Round cell sarcoma with CIC-DUX4 gene fusion: discussion of the distinctive cytomorphologic, immunohistochemical, and molecular features in the differential diagnosis of round cell tumors. Cancer Cytopathol 2016;124:350-361.
32.
Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, et al: Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol 2016;40:433-442.
33.
Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM, et al: High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207-218.
34.
Haidar A, Arekapudi S, DeMattia F, Abu-Isa E, Kraut M: High-grade undifferentiated small round cell sarcoma with t(4;19) (q35;q13.1) CIC-DUX4 fusion: emerging entities of soft tissue tumors with unique histopathologic features - a case report and literature review. Am J Case Rep 2015;16:87-94.
35.
Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR: Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 2014;53:622-633.
36.
Shibayama T, Okamoto T, Nakashima Y, Kato T, Sakurai T, Minamiguchi S, et al: Screening of BCOR-CCNB3 sarcoma using immunohistochemistry for CCNB3: a clinicopathological report of three pediatric cases. Pathol Int 2015;65:410-414.
37.
Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, et al: BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol 2016;40:1670-1678.
38.
Panagopoulos I, Gorunova L, Bjerkehagen B, Boye K, Heim S: Chromosome aberrations and HEY1-NCOA2 fusion gene in a mesenchymal chondrosarcoma. Oncol Rep 2014;32:40-44.
39.
Nyquist KB, Panagopoulos I, Thorsen J, Haugom L, Gorunova L, Bjerkehagen B, et al: Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5) (q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.
40.
Fritchie KJ, Jin L, Ruano A, Oliveira AM, Rubin BP: Are meningeal hemangiopericytoma and mesenchymal chondrosarcoma the same? A study of HEY1-NCOA2 fusion. Am J Clin Pathol 2013;140:670-674.
41.
Zhang N, Liu H, Yue G, Zhang Y, You J, Wang H: Molecular heterogeneity of Ewing sarcoma as detected by ion torrent sequencing. PLoS One 2016;11:e0153546.
42.
Jiang Y, Subbiah V, Janku F, Ludwig JA, Naing A, Benjamin RS, et al: Novel secondary somatic mutations in Ewing's sarcoma and desmoplastic small round cell tumors. PLoS One 2014;9:e93676.
43.
Ikeue T, Ohi I, Noguchi S, Fukao A, Terashita S, Horikawa S, et al: Desmoplastic small round cell tumor of the pleura successfully treated with a lower dose of pazopanib. Intern Med 2016;55:2463-2467.
44.
Frezza AM, Benson C, Judson IR, Litiere S, Marreaud S, Sleijfer S, et al: Pazopanib in advanced desmoplastic small round cell tumours: a multi-institutional experience. Clin Sarcoma Res 2014;4:7.
45.
Italiano A, Kind M, Cioffi A, Maki RG, Bui B: Clinical activity of sunitinib in patients with advanced desmoplastic round cell tumor: a case series. Target Oncol 2013;8:211-213.
46.
Naing A, LoRusso P, Fu S, Hong DS, Anderson P, Benjamin RS, et al: Insulin growth factor-receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with refractory Ewing's sarcoma family tumors. Clin Cancer Res 2012;18:2625-2631.
47.
Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Vishwamitra D, Wang Y, Maywald RL, et al: IGF-1R and mTOR blockade: novel resistance mechanisms and synergistic drug combinations for Ewing sarcoma. J Natl Cancer Inst 2016;108:djw182.
48.
Harlow ML, Maloney N, Roland J, Guillen Navarro MJ, Easton MK, Kitchen-Goosen SM, et al: Lurbinectedin inactivates the Ewing sarcoma oncoprotein EWS-FLI1 by redistributing it within the nucleus. Cancer Res 2016;76:6657-6668.
49.
Anderson PM, Bielack SS, Gorlick RG, Skubitz K, Daw NC, Herzog CE, et al: A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 2016;63:1761-1770.
50.
Frappaz D, Federico SM, Pearson AD, Gore L, Macy ME, DuBois SG, et al: Phase 1 study of dalotuzumab monotherapy and ridaforolimus-dalotuzumab combination therapy in paediatric patients with advanced solid tumours. Eur J Cancer 2016;62:9-17.
51.
Tanaka M, Kato K, Gomi K, Matsumoto M, Kudo H, Shinkai M, et al: Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:1416-1420.
52.
Argani P, Aulmann S, Illei PB, Netto GJ, Ro J, Cho HY, et al: A distinctive subset of PEComas harbors TFE3 gene fusions. Am J Surg Pathol 2010;34:1395-1406.
53.
Shen Q, Rao Q, Xia QY, Yu B, Shi QL, Zhang RS, et al: Perivascular epithelioid cell tumor (PEComa) with TFE3 gene rearrangement: clinicopathological, immunohistochemical, and molecular features. Virchows Arch 2014;465:607-613.
54.
Rao Q, Wang Y, Xia QY, Shi SS, Shen Q, Tu P, et al: Cathepsin K in the immunohistochemical diagnosis of melanocytic lesions. Int J Clin Exp Pathol 2014;7:1132-1139.
55.
Agaram NP, Sung YS, Zhang L, Chen CL, Chen HW, Singer S, et al: Dichotomy of genetic abnormalities in PEComas with therapeutic implications. Am J Surg Pathol 2015;39:813-825.
56.
Schoolmeester JK, Dao LN, Sukov WR, Wang L, Park KJ, Murali R, et al: TFE3 translocation-associated perivascular epithelioid cell neoplasm (PEComa) of the gynecologic tract: morphology, immunophenotype, differential diagnosis. Am J Surg Pathol 2015;39:394-404.
57.
Martignoni G, Pea M, Zampini C, Brunelli M, Segala D, Zamboni G, et al: PEComas of the kidney and of the genitourinary tract. Semin Diagn Pathol 2015;32:140-159.
58.
Huang SC, Zhang L, Sung YS, Chen CL, Krausz T, Dickson BC, et al: Frequent FOS gene rearrangements in epithelioid hemangioma: a molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol 2015;39:1313-1321.
59.
Antonescu CR, Chen HW, Zhang L, Sung YS, Panicek D, Agaram NP, et al: ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosomes Cancer 2014;53:951-959.
60.
Ide YH, Tsukamoto Y, Ito T, Watanabe T, Nakagawa N, Haneda T, et al: Penile pseudomyogenic hemangioendothelioma/epithelioid sarcoma-like hemangioendothelioma with a novel pattern of SERPINE1-FOSB fusion detected by RT-PCR - report of a case. Pathol Res Pract 2015;211:415-420.
61.
Walther C, Tayebwa J, Lilljebjorn H, Magnusson L, Nilsson J, von Steyern FV, et al: A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534-540.
62.
Trombetta D, Magnusson L, von Steyern FV, Hornick JL, Fletcher CD, Mertens F: Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211-215.
63.
Puls F, Niblett A, Clarke J, Kindblom LG, McCulloch T: YAP1-TFE3 epithelioid hemangioendothelioma: a case without vasoformation and a new transcript variant. Virchows Arch 2015;466:473-478.
64.
Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, et al: Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775-784.
65.
Shibuya R, Matsuyama A, Shiba E, Harada H, Yabuki K, Hisaoka M: CAMTA1 is a useful immunohistochemical marker for diagnosing epithelioid haemangioendothelioma. Histopathology 2015;67:827-835.
66.
Brenn T, Fletcher CD: Radiation-associated cutaneous atypical vascular lesions and angiosarcoma: clinicopathologic analysis of 42 cases. Am J Surg Pathol 2005;29:983-996.
67.
Mentzel T, Schildhaus HU, Palmedo G, Buttner R, Kutzner H: Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol 2012;25:75-85.
68.
Cornejo KM, Deng A, Wu H, Cosar EF, Khan A, St Cyr M, et al: The utility of MYC and FLT4 in the diagnosis and treatment of postradiation atypical vascular lesion and angiosarcoma of the breast. Hum Pathol 2015;46:868-875.
69.
Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CD: Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757-764.
70.
Guillou L, Benhattar J, Gengler C, Gallagher G, Ranchere-Vince D, Collin F, et al: Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:1387-1402.
71.
Cheah AL, Goldblum JR, Billings SD: Molecular diagnostics complementing morphology in superficial mesenchymal tumors. Semin Diagn Pathol 2013;30:95-109.
72.
Doyle LA, Moller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL: MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol 2011;35:733-741.
73.
Doyle LA, Wang WL, Dal Cin P, Lopez-Terrada D, Mertens F, Lazar AJ, et al: MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol 2012;36:1444-1451.
74.
Fritchie KJ, Goldblum JR, Tubbs RR, Sun Y, Carver P, Billings SD, et al: The expanded histologic spectrum of myxoid liposarcoma with an emphasis on newly described patterns: implications for diagnosis on small biopsy specimens. Am J Clin Pathol 2012;137:229-239.
75.
Le Loarer F, Zhang L, Fletcher CD, Ribeiro A, Singer S, Italiano A, et al: Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material. Genes Chromosomes Cancer 2014;53:475-486.
76.
Flucke U, Tops BB, Verdijk MA, van Cleef PJ, van Zwam PH, Slootweg PJ, et al: NR4A3 rearrangement reliably distinguishes between the clinicopathologically overlapping entities myoepithelial carcinoma of soft tissue and cellular extraskeletal myxoid chondrosarcoma. Virchows Arch 2012;460:621-628.
77.
Jo VY, Fletcher CD: Myoepithelial neoplasms of soft tissue: an updated review of the clinicopathologic, immunophenotypic, and genetic features. Head Neck Pathol 2015;9:32-38.
78.
Rekhi B, Sable M, Jambhekar NA: Histopathological, immunohistochemical and molecular spectrum of myoepithelial tumours of soft tissues. Virchows Arch 2012;461:687-697.
79.
Nishio J, Iwasaki H, Nabeshima K, Naito M: Cytogenetics and molecular genetics of myxoid soft-tissue sarcomas. Genet Res Int 2011;2011:497148.
80.
Agaram NP, Zhang L, Sung YS, Chen CL, Chung CT, Antonescu CR, et al: Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol 2016;40:1407-1416.
81.
Lewis JT, Oliveira AM, Nascimento AG, Schembri-Wismayer D, Moore EA, Olsen KD, et al: Low-grade sinonasal sarcoma with neural and myogenic features: a clinicopathologic analysis of 28 cases. Am J Surg Pathol 2012;36:517-525.
82.
Huang SC, Ghossein RA, Bishop JA, Zhang L, Chen TC, Huang HY, et al: Novel PAX3-NCOA1 fusions in biphenotypic sinonasal sarcoma with focal rhabdomyoblastic differentiation. Am J Surg Pathol 2016;40:51-59.
83.
Rooper LM, Huang SC, Antonescu CR, Westra WH, Bishop JA: Biphenotypic sinonasal sarcoma: an expanded immunoprofile including consistent nuclear beta-catenin positivity and absence of SOX10 expression. Hum Pathol 2016;55:44-50.
84.
Fritchie KJ, Jin L, Wang X, Graham RP, Torbenson MS, Lewis JE, et al: Fusion gene profile of biphenotypic sinonasal sarcoma: an analysis of 44 cases. Histopathology 2016;69:930-936.
85.
Sukov WR, Franco MF, Erickson-Johnson M, Chou MM, Unni KK, Wenger DE, et al: Frequency of USP6 rearrangements in myositis ossificans, brown tumor, and cherubism: molecular cytogenetic evidence that a subset of “myositis ossificans-like lesions” are the early phases in the formation of soft-tissue aneurysmal bone cyst. Skeletal Radiol 2008;37:321-327.
86.
Oliveira AM, Chou MM: USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:1-11.
87.
Yoshida A, Tsuta K, Ohno M, Yoshida M, Narita Y, Kawai A, et al: STAT6 immunohistochemistry is helpful in the diagnosis of solitary fibrous tumors. Am J Surg Pathol 2014;38:552-559.
88.
Yang CY, Liau JY, Huang WJ, Chang YT, Chang MC, Lee JC, et al: Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma. Am J Transl Res 2015;7:2072-2081.
89.
Antonescu CR, Suurmeijer AJ, Zhang L, Sung YS, Jungbluth AA, Travis WD, et al: Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957-967.
90.
Aitken SJ, Presneau N, Kalimuthu S, Dileo P, Berisha F, Tirabosco R, et al: Next-generation sequencing is highly sensitive for the detection of beta-catenin mutations in desmoid-type fibromatoses. Virchows Arch 2015;467:203-210.
91.
Cassier PA, Italiano A, Gomez-Roca CA, Le Tourneau C, Toulmonde M, Cannarile MA, et al: CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol 2015;16:949-956.
92.
Brahmi M, Vinceneux A, Cassier PA: Current systemic treatment options for tenosynovial giant cell tumor/pigmented villonodular synovitis: targeting the CSF1/CSF1R axis. Curr Treat Options Oncol 2016;17:10.
93.
Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, et al: Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N Engl J Med 2015;373:428-437.
94.
Staals EL, Ferrari S, Donati DM, Palmerini E: Diffuse-type tenosynovial giant cell tumour: current treatment concepts and future perspectives. Eur J Cancer 2016;63:34-40.
95.
Huang HY, West RB, Tzeng CC, van de Rijn M, Wang JW, Chou SC, et al: Immunohistochemical and biogenetic features of diffuse-type tenosynovial giant cell tumors: the potential roles of cyclin A, P53, and deletion of 15q in sarcomatous transformation. Clin Cancer Res 2008;14:6023-6032.
96.
Yang J, Du X: Genomic and molecular aberrations in malignant peripheral nerve sheath tumor and their roles in personalized target therapy. Surg Oncol 2013;22:e53-e57.
97.
Mertens F, Tayebwa J: Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151-162.
98.
Warren M, Turpin BK, Mark M, Smolarek TA, Li X: Undifferentiated myxoid lipoblastoma with PLAG1-HAS2 fusion in an infant; morphologically mimicking primitive myxoid mesenchymal tumor of infancy (PMMTI) - diagnostic importance of cytogenetic and molecular testing and literature review. Cancer Genet 2016;209:21-29.
99.
Davis IJ, McFadden AW, Zhang Y, Coxon A, Burgess TL, Wagner AJ, et al: Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res 2010;70:639-645.
100.
Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD, et al: EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:1051-1060.
101.
Casali PG: Histology- and non-histology-driven therapy for treatment of soft tissue sarcomas. Ann Oncol 2012;23(suppl 10): x167-x169.
102.
Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L, et al: A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 2014;46:595-600.
103.
Herrero Martin D, Boro A, Schafer BW: Cell-based small-molecule compound screen identifies fenretinide as potential therapeutic for translocation-positive rhabdomyosarcoma. PLoS One 2013;8:e55072.
104.
Shern JF, Yohe ME, Khan J: Pediatric rhabdomyosarcoma. Crit Rev Oncog 2015;20:227-243.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.