Although myocardial depression is the predominant cause of death in severe sepsis/septic shock, it remains disputed whether the functional changes are a consequence of structural alterations. If we look at myocardial dysfunction from the perspective of a critically ill patient, there are a few questions to be asked: What causes myocardial dysfunction? What is the pathophysiology of cardiac dysfunction and death? Is there something that could be done to prevent the outcome? Each of these questions is interrelated and the answers will be more easily addressed if we continue to understand the basic mechanisms that are implicated. The principal mechanisms proposed for the pathogenesis of myocardial dysfunction support a prominent role for functional rather than anatomical abnormalities. However, attempts to reduce the high mortality in septic patients by manipulating the functional alterations have provided limited success. In recent years, the concept of septic cardiomyopathy has evolved, which implies alterations in the myocardial phenotype. This review includes an overview on the activation of the immune system and therapeutic approaches in sepsis, myocardial structural changes in the human septic heart, experimental models of sepsis, and cellular, molecular and functional myocardial changes seen in a variety of experimental sepsis models. The abnormal parameters discussed may emerge as therapeutic targets, for which modulation might provide beneficial effects on cardiovascular outcome and mortality in sepsis in the future.

1.
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101:1644–1655.
2.
Annane D, Bellissant E, Cavaillon JM: Septic shock. Lancet 2005;365:63–78.
3.
Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP: Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 1990;113:227–242.
4.
Vieillard-Baron A, Caille V, Charron C, Belliard G, Page G, Jardin BF: Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 2008;36:1701–1706.
5.
Rudiger A, Singer M: Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 2007;35:1599–1608.
6.
Doerschug KC, Delsing AS, Schmidt GA, Haynes WG: Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 2007;293:H1065–H1071.
7.
Rudiger A: Beta-block the septic heart. Crit Care Med 2010;38:S608–S612.
8.
Ackland GL, Yao ST, Rudiger A, Dyson A, Stidwill R, Poputnikov D, Singer M, Gourine AV: Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1-adrenoceptor blockade in severe sepsis in rats. Crit Care Med 2010;38:388–394.
9.
dos Santos CC, Gattas DJ, Tsoporis JN, Smeding L, Kabir G, Masoom H, Akram A, Plotz F, Slutsky AS, Husain M, Sibbald WJ, Parker TG: Sepsis-induced myocardial depression is associated with transcriptional changes in energy metabolism and contractile related genes: a physiological and gene expression-based approach. Crit Care Med 2010;38:894–902.
10.
Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R: Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 2009;329:641–648.
11.
Chopra M, Golden HB, Mullapudi S, Dowhan W, Dostal DE, Sharma AC: Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat. PLoS One 2011;6:e21285.
12.
Lichtenstern C, Brenner T, Bardenheuer HJ, Weigand MA: Predictors of survival in sepsis: what is the best inflammatory marker to measure? Curr Opin Infect Dis 2012;25:328–336.
13.
Mink SN, Kasian K, Jacobs H, Cheng ZQ, Light RB: N,N’-diacetylchitobiose, an inhibitor of lysozyme, reverses myocardial depression and lessens norepinephrine requirements in Escherichia coli sepsis in dogs. Shock 2008;29:681–687.
14.
Araújo AV, Ferezin CZ, Pereira Ade C, Rodrigues GJ, Grando MD, Bonaventura D, Bendhack LM: Augmented nitric oxide production and up-regulation of endothelial nitric oxide synthase during cecal ligation and perforation. Nitric Oxide 2012;27:59–66.
15.
Lancel S, Tissier S, Mordon S, Marechal X, Depontieu F, Scherpereel A, Chopin C, Neviere R: Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 2004;43:2348–2358.
16.
Iwata A, de Claro RA, Morgan-Stevenson VL, Tupper JC, Schwartz BR, Liu L, Zhu X, Jordan KC, Winn RK, Harlan JM: Extracellular administration of BCL2 protein reduces apoptosis and improves survival in a murine model of sepsis. PLoS One 2011;6:e14729.
17.
Stengl M, Bartak F, Sykora R, Chvojka J, Benes J, Krouzecky A, Novak I, Sviglerova J, Kuncova J, Matejovic M: Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Crit Care Med 2010;38:579–587.
18.
Dong LW, Wu LL, Ji Y, Liu MS: Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock 2001;16:33–39.
19.
Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J, Schorr C, Artigas A, Ramsay G, Beale R, Parker MM, Gerlach H, Reinhart K, Silva E, Harvey M, Regan S, Angus DC: The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med 2010;36:222–231.
20.
Rossi MA, Celes MRN, Prado CM, Saggioro FP: Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock 2007;27:10–18.
21.
Muller-Werdan U, Buerke M, Ebelt H, Heinroth KM, Herklotz A, Loppnow H, Ruß M, Schlegel F, Schlitt A, Schmidt HB, Söffker G, Werdan K: Septic cardiomyopathy – a not yet discovered cardiomyopathy? Exp Clin Cardiol 2006;11:226–236.
22.
Flierl MA, Rittirsch D, Huber-Lang MS, Sarma JV, Ward PA: Molecular events in the cardiomyopathy of sepsis. Mol Med 2008;14:327–336.
23.
Hunter JD, Doddi M: Sepsis and the heart. Br J Anaesth 2010;104:3–11.
24.
Vieillard-Baron A: Septic cardiomyopathy. Ann Intensive Care 2011;1:6.
25.
Adib-Conquy M, Cavaillon JM: Réponse inflammatoire et anti-inflammatoire de l’hôte au cours du sepsis. Pathol Biol (Paris) DOI: 10.1016/j.patbio.2012.03.011, E-pub ahead of print.
26.
Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007;81:1–5.
27.
Akira S, Takeda K: Toll-like receptor signaling. Nat Rev Immunol 2004;4:499–511.
28.
Park BS, Song DH, Choi B-S, Lee H, Lee J-O: The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009;458:1191–1195.
29.
Thomas JA, Haudek SB, Koroglu T, Tsen MF, Bryant DD, White DJ, Kusewitt DF, Horton JW, Giroir BP: IRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction. Am J Physiol Heart Circ Physiol 2003;285:H597–H606.
30.
Soriano FG, Lorigados CB, Pacher P, Szabó C: Effects of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Shock 2011;35:560–566.
31.
Torres-Duenas D, Celes MR, Freitas A, Alves-Filho JC, Spiller F, Dal-Secco D, Dalto VF, Rossi MA, Ferreira SH, Cunha FQ: Peroxynitrite mediates the failure of neutrophil migration in severe polymicrobial sepsis in mice. Br J Pharmacol 2007;152:341–352.
32.
Rittirsch D, Flierl MA, Ward PA: Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008;8:776–787.
33.
Bergmann M, Sautner T: Immunomodulatory effects of vasoactive catecholamines. Wien Klin Wochenschr 2002;114:752–761.
34.
Osuchowski MF, Welch K, Siddiqui J, Remick DG: Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 2006;177:1967–1974.
35.
Rittirsch D, Hoesel LM, Ward PA: The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol 2007;81:137–143.
36.
Esmon CT: Why do animal models (sometimes) fail to mimic human sepsis? Crit Care Med 2004;32:S219–S222.
37.
Beutler B, Milsark IW, Cerami AC: Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985;229:869–871.
38.
Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A: Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987;330:662–664.
39.
Fisher CJ Jr, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, Abraham E, Schein RM, Benjamin E: Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996;334:1697–1702.
40.
Abraham E, Laterre PF, Garbino J, Pingleton S, Butler T, Dugernier T, Margolis B, Kudsk K, Zimmerli W, Anderson P, Reynaert M, Lew D, Lesslauer W, Passe S, Cooper P, Burdeska A, Modi M, Leighton A, Salgo M, Van der Auwera P, Lenercept Study Group: Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. Crit Care Med 2001;29:503–510.
41.
Fischer E, Marano MA, Van Zee KJ, Rock CS, Hawes AS, Thompson WA, DeForge L, Kenney JS, Remick DG, Bloedow DC: Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. J Clin Invest 1992;89:1551–1557.
42.
Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL, et al: Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 1994;271:1836–1843.
43.
Patel GP, Balk RA: Systemic steroids in severe sepsis and septic shock. Am J Respir Crit Care Med 2012;185:133–139.
44.
Rearte B, Landoni V, Laborde E, Fernández G, Isturiz M: Differential effects of glucocorticoids in the establishment and maintenance of endotoxin tolerance. Clin Exp Immunol 2010;159:208–216.
45.
Batzofin BM, Sprung CL, Weiss YG: The use of steroids in the treatment of severe sepsis and septic shock. Best Pract Res Clin Endocrinol Metab 2011;25:735–743.
46.
Sprung CL, Goodman S, Weiss YG: Steroid therapy of septic shock. Crit Care Nurs Clin North Am 2011;23:171–180.
47.
Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson A-L, Mauri D, Burns K, Riederer BM, Akira S, Calandra T: Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci USA 2009;106:2348–2352.
48.
Matsuyama K: Eisai’s sepsis drug eritoran fails to save more lives in final-stage study. http://www.bloomberg.com/news/2011-01-25/eisai-s-sepsis-drug-eritoran-fails-to-save-more-lives-in-final-stage-study.html (accessed June 4, 2012).
49.
Borgel D, Vieillard-Baron A: La protein C activée. Une protéine à l’interface de l’inflammation et de la coagulation. Med Sci (Paris) 2011;27:501–507.
50.
Xigris [drotrecogin alfa (activated)]: market withdrawal – failure to show survival benefit. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm277143.htm (accessed June 4, 2012).
51.
Leung S, Pokharel R, Gong MN: Statins and outcomes in patients with bloodstream infection. A propensity-matched analysis. Crit Care Med 2012;40:1064–1071.
52.
Norbury WB, Jeschke MG, Herdon DN: Metabolism modulators in sepsis: propanolol. Crit Care Med 2007;35:S616–S620.
53.
Mori K, Morisaki H, Yajima S, Suzuki T, Ishikawa A, Nakamura N, Innami Y, Takeda J: Beta-1 blocker improves survival of septic rats through preservation of gut barrier function. Intensive Care Med 2011;37:1849–1856.
54.
Suzuki T, Mrisaki H, Serita R, Yamamoto M, Kotake Y, Yshikawa A, Takeda J: Infusion of β-adrenergic blocker esmolol attenuates myocardial dysfunction in septic hearts. Crit Care Med 2005;33:2294–2301.
55.
Schmitz D, Wilsenack K, Lendemanns S, Scheldlowski M, Oberbeck R: Beta-adrenergic blockade during systemic inflammation: impact on cellular immune functions and survival in a murine model of sepsis. Resuscitation 2007;72:286–294.
56.
Patterson AJ, Zhu W, Chow A, Agrawal R, Kosek J, Xiao RP, Kobilka B: Protecting the myocardium: a role for beta 2 adrenergic receptor in the heart. Crit Care Med 2004;32:1041–1048.
57.
Zhang F, Wu R, Qiang X, Zhou M, Wang P: Antagonism of α2A-adrenoceptor: a novel approach to inhibit inflammatory response in sepsis. J Mol Med 2010;88:289–296.
58.
ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK: Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 2000;46:650–657.
59.
Moon VH: The pathology of secondary shock. Am J Pathol 1948;24:235–273.
60.
Fernandes Júnior CJ, Iervolino M, Neves RA, Sampaio EL, Knobel E: Interstitial myocarditis in sepsis. Am J Cardiol 1994;74:958.
61.
Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P: Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 1996;93:841–842.
62.
Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL: Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995;96:1042–1052.
63.
Meldrum DR: Tumor necrosis factor in the heart. Am J Physiol 1998;274:R577–R595.
64.
Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH: Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 2000;97:1784–1789.
65.
Remick DG, Newcomb DE, Bolgos GL, Call DR: Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 2000;13:110–116.
66.
Wichterman KA, Baue AE, Chaudry IH: Sepsis and septic shock – a review of laboratory models and a proposal. J Surg Res 1980;29:189–201.
67.
Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, Chaudry IH: Cecal ligation and puncture. Shock 2005;24:52–57.
68.
Fry DE: Sepsis, systemic inflammatory response and multiple organ dysfunction. The mystery continues. Am Surg 2012;78:1–8.
69.
Vincent JL, Ferreira F, Moreno R: Scoring biosystems for assessing organ dysfunction and survival. Crit Care Clin 2000;16:353–366.
70.
Gustot T: Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 2011;17:153–159.
71.
Coalson JJ, Hinshaw LB, Guenter CA, Berrell EL, Greenfield LJ: Pathophysiologic responses of the subhuman primate in experimental septic shock. Lab Invest 1975;32:561–569.
72.
Schlag G, Redl H, van Vuuren CJ, Davies J: Hyperdynamic sepsis in baboons: II. Relation of organ damage to severity of sepsis evaluated by a newly developed morphological scoring system. Circ Shock 1992;38:253–263.
73.
Hersch M, Gnidec AA, Bersten AD, Troster M, Rutledge FS, Sibbald WJ: Histologic and ultrastructural changes in nonpulmonary organs during early hyperdynamic sepsis. Surgery 1990;107:397–410.
74.
Gotloib L, Shostak A, Galdi P, Jaichenko J, Fudin R: Loss of microvascular negative charges accompanied by interstitial edema in septic rats’ heart. Circ Shock 1992;36:45–56.
75.
Solomon MA, Correa R, Alexander HR, Koev LA, Cobb JP, Kim DK, Roberts WC, Quezado ZM, Scholz TD, Cunnion RE: Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 1994;266:H757–H768.
76.
Goddard CM, Allard MF, Hogg JC, Walley KR: Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 1996;270:H1446–H1452.
77.
Piper RD, Li FY, Myers ML, Sibbald WJ: Structure-function relationships in the septic rat heart. Am J Respir Crit Care Med 1997;156:1473–1482.
78.
Zhou M, Wang P, Chaudry IH: Cardiac contractility and structure are not significantly compromised even during the late, hypodynamic stage of sepsis. Shock 1998;9:352–358.
79.
Sharma AC, Motew SJ, Farias S, Alden KJ, Bosmann HB, Law WR, Ferguson JL: Sepsis alters myocardial and plasma concentrations of endothelin and nitric oxide in rats. J Mol Cell Cardiol 1997;29:1469–1477.
80.
Ren J, Ren BH, Sharma AC: Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 2002;18:285–288.
81.
Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W: A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 1985;76:1539–1553.
82.
Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE: The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 1989;321:280–287.
83.
Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo GC, Banks SM, MacVittie TJ, Parrillo JE: Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 1989;169:823–832.
84.
Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL: Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993;92:2303–2312.
85.
Celes MR, Torres-Dueñas D, Prado CM, Campos EC, Moreira JE, Cunha FQ, Rossi MA: Increased sarcolemmal permeability as an early event in experimental septic cardiomyopathy: a potential role for oxidative damage to lipids and proteins. Shock 2010;33:322–331.
86.
Rossi MA, Santos CS: Sepsis-related microvascular myocardial damage with giant cell inflammation and calcification. Virchows Arch 2003;443:87–92.
87.
Ikeda Y, Martone M, Gu Y, Hoshijima M, Thor A, Oh SS, Peterson KL, Ross J: Altered membrane proteins and permeability correlate with cardiac dysfunction in cardiomyopathic hamsters. Am J Physiol Heart Circ Physiol 2000;278:H1362–H1370.
88.
Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O: Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med 2006;34:127–133.
89.
Rodríguez M, Cai WJ, Kostin S, Lucchesi BR, Schaper J: Ischemia depletes dystrophin and inhibits protein synthesis in the canine heart: mechanisms of myocardial ischemic injury. J Mol Cell Cardiol 2005;38:723–733.
90.
Campos EC, Romano MM, Prado CM, Rossi MA: Isoproterenol induces primary loss of dystrophin in rat hearts: correlation with myocardial injury. Int J Exp Pathol 2008;89:367–381.
91.
Borg TK, Terracio L: Interaction of the extracellular matrix with cardiac myocytes during development and disease; in Robinson TF, Kinne RKH (eds): Cardiac Myocyte-Connective Tissue Interactions in Health and Disease. Basel, Karger, 1990, pp 113–130.
92.
Robinson TF, Cohen-Gould L, Factor SM: Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab Invest 1983;49:482–498.
93.
Klietsch R, Ervasti JM, Arnold W, Campbell KP, Jorgensen AO: Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ Res 1993;72:349–360.
94.
Hein S, Kostin S, Heling A, Maeno Y, Schaper J: The role of the cytoskeleton in heart failure. Cardiovasc Res 2000;45:273–278.
95.
Kostin S, Hein S, Arnon E, Scholz D, Schaper J: The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev 2000;5:271–280.
96.
Lapidos KA, Kakkar R, McNally EM: The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 2004;94:1023–1031.
97.
Oliviéro P, Chassagne C, Salichon N, Corbier A, Hamon G, Marotte F, Charlemagne D, Rappaport L, Samuel JL: Expression of laminin alpha2 chain during normal and pathological growth of myocardium in rat and human. Cardiovasc Res 2000;46:346–355.
98.
Heydemann A, McNally EM: Consequences of disrupting the dystrophin-sarcoglycan complex in cardiac and skeletal myopathy. Trends Cardiovasc Med 2007;17:55–59.
99.
Celes MR, Torres-Dueñas D, Malvestio LM, Blefari V, Campos EC, Ramos SG, Prado CM, Cunha FQ, Rossi MA: Disruption of sarcolemmal dystrophin and beta-dystroglycan may be a potential mechanism for myocardial dysfunction in severe sepsis. Lab Invest 2010;90:531–542.
100.
Stevenson S, Rothery S, Cullen MJ, Severs NJ: Spatial relationship of the C-terminal domains of dystrophin and beta-dystroglycan in cardiac muscle support a direct molecular interaction at the plasma membrane interface. Circ Res 1998;82:82–93.
101.
Jung C, Martins AS, Niggli E, Shirokova N: Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc Res 2008;77:766–773.
102.
Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ, Des Rosiers C: Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 2007;43:119–129.
103.
Straub V, Bittner RE, Léger JJ, Voit T: Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J Cell Biol 1992;119:1183–1191.
104.
Rybakova IN, Patel JR, Ervasti JM: The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 2000;150:1209–1214.
105.
Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP: Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 1990;345:315–319.
106.
Severs NJ: The cardiac muscle cell. Bioessays 2000;22:188–199.
107.
Gutstein DE, Liu FY, Meyers MB, Choo A, Fishman GI: The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions. J Cell Sci 2003;116:875–885.
108.
Jamora C, Fuchs E: Intercellular adhesion, signaling and the cytoskeleton. Nat Cell Biol 2002;4:E101–E108.
109.
Severs NJ, Bruce AF, Dupont E, Rothery S: Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 2008;80:9–19.
110.
Evans WH, Martin PE: Gap junctions: Structure and function (review). Mol Membr Biol 2002;19:121–136.
111.
Celes MR, Torres-Dueñas D, Alves-Filho JC, Duarte DB, Cunha FQ, Rossi MA: Reduction of gap and adherens junction proteins and intercalated disc structural remodeling in the hearts of mice submitted to severe cecal ligation and puncture sepsis. Crit Care Med 2007;35:2176–2185.
112.
Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL: Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res 2005;96:346–354.
113.
Li J, Patel VV, Kostetskii I, Xiong Y, Chu AF, Jacobson JT, Yu C, Morley GE, Molkentin JD, Radice GL: Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res 2005;97:474–481.
114.
Hertig CM, Eppenberger-Eberhardt M, Koch S, Eppenberger HM: N-cadherin in adult rat cardiomyocytes in culture. I. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant. J Cell Sci 1996;109:1–10.
115.
Zuppinger C, Schaub MC, Eppenberger HM: Dynamics of early contact formation in cultured adult rat cardiomyocytes studied by N-cadherin fused to green fluorescent protein. J Mol Cell Cardiol 2000;32:539–555.
116.
Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI: Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 2001;88:333–339.
117.
van Rijen HV, Eckardt D, Degen J, Theis M, Ott T, Willecke K, Jongsma HJ, Opthof T, de Bakker JM: Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 2004;109:1048–1055.
118.
Parker MM, Parrillo JE: Septic shock. Hemodynamics and pathogenesis. JAMA 1983;250:3324–3327.
119.
Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhamer JH, Parrillo JE: Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 1989;4:19–25.
120.
Krishnagopalan S, Kumar A, Parrillo JE: Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care 2002;8:376–388.
121.
Rasmussen H: The calcium messenger system (1). N Engl J Med 1986;314:1094–1101.
122.
Nicotera P, Bellomo G, Orrenius S: Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 1992;32:449–470.
123.
Schanne FA, Kane AB, Young EE, Farber JL: Calcium dependence of toxic cell death: a final common pathway. Science 1979;206:700–702.
124.
Song SK, Karl IE, Ackerman JJ, Hotchkiss RS: Increased intracellular Ca2+: a critical link in the pathophysiology of sepsis? Proc Natl Acad Sci USA 1993;90:3933–3937.
125.
Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M: Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 2009;53:1993–2005.
126.
Hotchkiss RS, Karl IE: Dantrolene ameliorates the metabolic hallmarks of sepsis in rats and improves survival in a mouse model of endotoxemia. Proc Natl Acad Sci USA 1994;91:3039–3043.
127.
Fischer DR, Sun X, Williams AB, Gang G, Pritts TA, James JH, Molloy M, Fischer JE, Paul RJ, Hasselgren PO: Dantrolene reduces TNFα and corticosterone levels and muscle calcium, calpain gene expression, and protein metabolism in septic rats. Shock 2001;15:200–207.
128.
Wray CJ, Sun X, Gang GI, Hasselgren PO: Dantrolene downregulates the gene expression and activity of the ubiquitin-proteasome proteolytic pathway in septic skeletal muscle. J Surg Res 2002;104:82–87.
129.
Smith IJ, Lecker SH, Hasselgren PO: Calpain activity and muscle wasting in sepsis. Am J Physiol Endocrinol Metab 2008;295:E768–E771.
130.
Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R: Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 2008;36:2590–2596.
131.
Lee KS, Tsien RW: Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 1983;302:790–794.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.