Objective: As one of the important active barriers in the human organism, endothelial cells (EC) play a central role in the biological reaction to a variety of stimuli, e.g. during the induction and regulation of inflammation, as well as in the reaction to transplantation and biomaterial implantation. In the study of endothelial function, the most widely used in vitro model is that of human umbilical vein EC (HUVEC), i.e. an EC type of embryonic and macrovascular origin. However, many of the important pathological processes occur at microvascular level, thus questioning the validity of the HUVEC model. Moreover, the morphological and functional heterogeneity of the endothelium in the various organs, e.g. kidney, liver and lung, must be taken into consideration. The purpose of the present study was to use a dynamic cell culture system to compare the reactions of HUVEC and human pulmonary microvascular EC (HPMEC) to pro-inflammatory stimulation. Methods: HUVEC and HPMEC in monolayer culture were stimulated by tumor necrosis factor-α (TNFα) in a parallel-plate flow chamber. Short- (4 h) and long-term (12 h) stimulation were compared. As a functional parameter, the adhesion of human peripheral blood polymorphonuclear granulocytes (PMN) to EC was quantitated both under venous and arterial flow conditions. Results: Short-term (4 h) TNFα stimulation and venous flow conditions elicited a 32% higher PMN adhesion to HPMEC compared with HUVEC, whereas under arterial flow conditions no statistically significant differences were found. Following longer-term (12 h) TNFα stimulation, PMN adhesion to HPMEC was 65% higher than to HUVEC under venous flow. Under arterial flow no differences were detected. Conclusion: The present results provide new data on the heterogeneity of the endothelium and affect a central element in microvascular pathology, namely granulocyte-endothelial interactions. Moreover, this paper emphasizes the necessity to evaluate the in vitro models of the endothelium with respect to the extrapolation to the situation in vivo.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.