Objective: Magnesium (Mg) has previously been found to modulate blood lipid levels, atherogenesis and atherosclerosis in rabbits when used as a dietary supplement. In addition, we have reported that Mg fortification of drinking water can attenuate atherogenesis in male low-density lipoprotein (LDL)-receptor-deficient mice, but had a mild and nonsignificant effect on female mice fed a high-cholesterol diet supplemented with cholic acid. The aim of this study was to examine whether Mg has an antiatherogenic effect in female mice fed a high-cholesterol diet without cholic acid. Methods: Two groups of female LDL-receptor-deficient mice were included. The mice received either distilled water or water with 50 g of Mg sulfate per liter. In the first (12 weeks) and second (6 weeks) stages of the experiment, the mice received low- and high-cholesterol diets, respectively, both without cholic acid. At the end of each stage of the experiment, blood was drawn for the determination of plasma Mg, calcium and lipid levels. In addition, the extent of atherosclerosis was determined at the aortic sinus level. Results: Mg fortification was associated with higher levels of plasma Mg while the mice were on a high-cholesterol diet, and the extent of atherosclerosis at the aortic sinus was significantly decreased in the female mice that received high levels of Mg compared with the female mice that received distilled water. The female mice that received water fortified with Mg had lower levels of triglycerides after stage 2, whereas no differences regarding cholesterol levels were found. Conclusion: These results confirm that Mg fortification of drinking water is capable of inhibiting atherogenesis also in female LDL-receptor-deficient mice fed a high-cholesterol diet, and demonstrate the importance of the nutritional composition of diet in this experimental model.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.