Background: Adoptive cellular therapy (ACT) is a promising treatment approach aiming at enhancing T-cell antitumor immune response. ACT includes tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) and T-cell receptor gene-modified T cells. Despite a milestone achievement with CAR-T cells in hematopoietic malignancies, ACT has shown modest clinical responses in refractory solid cancers and durable responses remain limited to a minor fraction of patients. Summary: In this review, we highlight major advances, limitations and current developments of T-cell therapies for solid cancers. We discuss emerging promising strategies as next-generation ACT, exploring local delivery routes to maximize efficacy and improve safety, integrating predictive biomarkers to optimize selection of patients who most likely would benefit from ACT, using combination therapy to overcome the immunosuppressive tumor microenvironment, targeting multiple tumor antigen to avoid tumor antigen escape, selection of the most potent T-cell product to overcome T-cell dysfunction, and incorporating cutting-edge new technologies, such as gene-editing to further improve antitumor T-cell functions and reduce therapy-related toxicity. Key Messages: Advances made in ACT trials have move the field of immunotherapy for refractory solid cancers to a new stage, by constantly incorporating new strategies to develop next-generation therapies designed to enhance efficacy and improve safety and to allow a broaden access to a large numbers of patients.

1.
Nishimura
MI
,
Kawakami
Y
,
Charmley
P
,
O'Neil
B
,
Shilyansky
J
,
Yannelli
JR
, et al
.
T-cell receptor repertoire in tumor-infiltrating lymphocytes. Analysis of melanoma-specific long-term lines
.
J Immunother Emphasis Tumor Immunol
.
1994
;
16
(
2
):
85
94
.
2.
Kawakami
Y
,
Eliyahu
S
,
Delgado
CH
,
Robbins
PF
,
Rivoltini
L
,
Topalian
SL
, et al
.
Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor
.
Proc Natl Acad Sci USA
.
1994
;
91
(
9
):
3515
9
.
3.
Kawakami
Y
,
Eliyahu
S
,
Sakaguchi
K
,
Robbins
PF
,
Rivoltini
L
,
Yannelli
JR
, et al
.
Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes
.
J Exp Med
.
1994
;
180
(
1
):
347
52
.
4.
Drougkas
K
,
Karampinos
K
,
Karavolias
I
,
Koumprentziotis
IA
,
Ploumaki
I
,
Triantafyllou
E
, et al
.
Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end
.
J Cancer Res Clin Oncol
.
2023
;
149
(
6
):
2709
34
.
5.
Maher
J
,
Davies
DM
.
CAR-based immunotherapy of solid tumours-A survey of the emerging targets
.
Cancers
.
2023
;
15
(
4
):
1171
.
6.
Klebanoff
CA
,
Chandran
SS
,
Baker
BM
,
Quezada
SA
,
Ribas
A
.
T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome
.
Nat Rev Drug Discov
.
2023
;
22
(
12
):
996
1017
.
7.
Rosenberg
SA
,
Packard
BS
,
Aebersold
PM
,
Solomon
D
,
Topalian
SL
,
Toy
ST
, et al
.
Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report
.
N Engl J Med
.
1988
;
319
(
25
):
1676
80
.
8.
Wickstrom
S
,
Lovgren
T
.
Expansion of tumor-infiltrating lymphocytes from melanoma tumors
.
Methods Mol Biol
.
2019
;
1913
:
105
18
.
9.
Dudley
ME
,
Wunderlich
JR
,
Robbins
PF
,
Yang
JC
,
Hwu
P
,
Schwartzentruber
DJ
, et al
.
Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes
.
Science
.
2002
;
298
(
5594
):
850
4
.
10.
Dafni
U
,
Michielin
O
,
Lluesma
SM
,
Tsourti
Z
,
Polydoropoulou
V
,
Karlis
D
, et al
.
Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis
.
Ann Oncol
.
2019
;
30
(
12
):
1902
13
.
11.
Rosenberg
SA
,
Spiess
P
,
Lafreniere
R
.
A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes
.
Science
.
1986
;
233
(
4770
):
1318
21
.
12.
Rosenberg
SA
,
Yannelli
JR
,
Yang
JC
,
Topalian
SL
,
Schwartzentruber
DJ
,
Weber
JS
, et al
.
Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2
.
J Natl Cancer Inst
.
1994
;
86
(
15
):
1159
66
.
13.
Chesney
J
,
Lewis
KD
,
Kluger
H
,
Hamid
O
,
Whitman
E
,
Thomas
S
, et al
.
Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: pooled analysis of consecutive cohorts of the C-144-01 study
.
J Immunother Cancer
.
2022
;
10
(
12
):
e005755
.
14.
Sarnaik
AA
,
Hamid
O
,
Khushalani
NI
,
Lewis
KD
,
Medina
T
,
Kluger
HM
, et al
.
Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma
.
J Clin Oncol
.
2021
;
39
(
24
):
2656
66
.
15.
Aoki
Y
,
Takakuwa
K
,
Kodama
S
,
Tanaka
K
,
Takahashi
M
,
Tokunaga
A
, et al
.
Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer
.
Cancer Res
.
1991
;
51
(
7
):
1934
9
.
16.
Jiang
SS
,
Tang
Y
,
Zhang
YJ
,
Weng
DS
,
Zhou
ZG
,
Pan
K
, et al
.
A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma
.
Oncotarget
.
2015
;
6
(
38
):
41339
49
.
17.
Stevanovic
S
,
Draper
LM
,
Langhan
MM
,
Campbell
TE
,
Kwong
ML
,
Wunderlich
JR
, et al
.
Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells
.
J Clin Oncol
.
2015
;
33
(
14
):
1543
50
.
18.
Stevanovic
S
,
Helman
SR
,
Wunderlich
JR
,
Langhan
MM
,
Doran
SL
,
Kwong
MLM
, et al
.
A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers
.
Clin Cancer Res
.
2019
;
25
(
5
):
1486
93
.
19.
Jazaeri
AA
,
Zsiros
E
,
Amaria
RN
,
Artz
AS
,
Edwards
RP
,
Wenham
RM
, et al
.
Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma
.
J Clin Oncol
.
2019
;
37
(
15_Suppl l
):
2538
.
20.
Creelan
BC
,
Wang
C
,
Teer
JK
,
Toloza
EM
,
Yao
J
,
Kim
S
, et al
.
Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial
.
Nat Med
.
2021
;
27
(
8
):
1410
8
.
21.
Zacharakis
N
,
Huq
LM
,
Seitter
SJ
,
Kim
SP
,
Gartner
JJ
,
Sindiri
S
, et al
.
Breast cancers are immunogenic: immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes
.
J Clin Oncol
.
2022
;
40
(
16
):
1741
54
.
22.
Tran
KQ
,
Zhou
J
,
Durflinger
KH
,
Langhan
MM
,
Shelton
TE
,
Wunderlich
JR
, et al
.
Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy
.
J Immunother
.
2008
;
31
(
8
):
742
51
.
23.
Shiravand
Y
,
Khodadadi
F
,
Kashani
SMA
,
Hosseini-Fard
SR
,
Hosseini
S
,
Sadeghirad
H
, et al
.
Immune checkpoint inhibitors in cancer therapy
.
Curr Oncol
.
2022
;
29
(
5
):
3044
60
.
24.
Carlino
MS
,
Larkin
J
,
Long
GV
.
Immune checkpoint inhibitors in melanoma
.
Lancet
.
2021
;
398
(
10304
):
1002
14
.
25.
Ferris
RL
,
Blumenschein
G
Jr
,
Fayette
J
,
Guigay
J
,
Colevas
AD
,
Licitra
L
, et al
.
Nivolumab for recurrent squamous-cell carcinoma of the head and neck
.
N Engl J Med
.
2016
;
375
(
19
):
1856
67
.
26.
Rohaan
MW
,
Borch
TH
,
van den Berg
JH
,
Met
Ö
,
Kessels
R
,
Geukes Foppen
MH
, et al
.
Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma
.
N Engl J Med
.
2022
;
387
(
23
):
2113
25
.
27.
Poschke
IC
,
Hassel
JC
,
Rodriguez-Ehrenfried
A
,
Lindner
KAM
,
Heras-Murillo
I
,
Appel
LM
, et al
.
The outcome of ex vivo TIL expansion is highly influenced by spatial heterogeneity of the tumor T-cell repertoire and differences in intrinsic in vitro growth capacity between T-cell clones
.
Clin Cancer Res
.
2020
;
26
(
16
):
4289
301
.
28.
Tsuji
T
,
Eng
KH
,
Matsuzaki
J
,
Battaglia
S
,
Szender
JB
,
Miliotto
A
, et al
.
Clonality and antigen-specific responses shape the prognostic effects of tumor-infiltrating T cells in ovarian cancer
.
Oncotarget
.
2020
;
11
(
27
):
2669
83
.
29.
Miller
BC
,
Sen
DR
,
Al Abosy
R
,
Bi
K
,
Virkud
YV
,
LaFleur
MW
, et al
.
Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade
.
Nat Immunol
.
2019
;
20
(
3
):
326
36
.
30.
Daud
AI
,
Loo
K
,
Pauli
ML
,
Sanchez-Rodriguez
R
,
Sandoval
PM
,
Taravati
K
, et al
.
Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma
.
J Clin Investig
.
2016
;
126
(
9
):
3447
52
.
31.
Savas
P
,
Virassamy
B
,
Ye
C
,
Salim
A
,
Mintoff
CP
,
Caramia
F
, et al
.
Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis
.
Nat Med
.
2018
;
24
(
7
):
986
93
.
32.
Sade-Feldman
M
,
Yizhak
K
,
Bjorgaard
SL
,
Ray
JP
,
de Boer
CG
,
Jenkins
RW
, et al
.
Defining T cell states associated with response to checkpoint immunotherapy in melanoma
.
Cell
.
2018
;
175
(
4
):
998
1013 e20
.
33.
Krishna
S
,
Lowery
FJ
,
Copeland
AR
,
Bahadiroglu
E
,
Mukherjee
R
,
Jia
L
, et al
.
Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer
.
Science
.
2020
;
370
(
6522
):
1328
34
.
34.
Barras
D
,
Ghisoni
E
,
Chiffelle
J
,
Orcurto
A
,
Dagher
J
,
Fahr
N
, et al
.
Response to tumor-infiltrating lymphocyte adoptive therapy is associated with preexisting CD8(+) T-myeloid cell networks in melanoma
.
Sci Immunol
.
2024
;
9
(
92
):
eadg7995
.
35.
Martincorena
I
,
Campbell
PJ
.
Somatic mutation in cancer and normal cells
.
Science
.
2015
;
349
(
6255
):
1483
9
.
36.
Gokuldass
A
,
Draghi
A
,
Papp
K
,
Borch
TH
,
Nielsen
M
,
Westergaard
MCW
, et al
.
Qualitative analysis of tumor-infiltrating lymphocytes across human tumor types reveals a higher proportion of bystander CD8(+) T cells in non-melanoma cancers compared to melanoma
.
Cancers
.
2020
;
12
(
11
):
3344
.
37.
Tran
E
,
Robbins
PF
,
Lu
YC
,
Prickett
TD
,
Gartner
JJ
,
Jia
L
, et al
.
T-cell transfer therapy targeting mutant KRAS in cancer
.
N Engl J Med
.
2016
;
375
(
23
):
2255
62
.
38.
Tran
E
,
Turcotte
S
,
Gros
A
,
Robbins
PF
,
Lu
YC
,
Dudley
ME
, et al
.
Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer
.
Science
.
2014
;
344
(
6184
):
641
5
.
39.
Zacharakis
N
,
Chinnasamy
H
,
Black
M
,
Xu
H
,
Lu
YC
,
Zheng
Z
, et al
.
Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer
.
Nat Med
.
2018
;
24
(
6
):
724
30
.
40.
Kristensen
NP
,
Heeke
C
,
Tvingsholm
SA
,
Borch
A
,
Draghi
A
,
Crowther
MD
, et al
.
Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in melanoma
.
J Clin Investig
.
2022
;
132
(
2
):
e150535
.
41.
Kim
SP
,
Vale
NR
,
Zacharakis
N
,
Krishna
S
,
Yu
Z
,
Gasmi
B
, et al
.
Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors
.
Cancer Immunol Res
.
2022
;
10
(
8
):
932
46
.
42.
Lowery
FJ
,
Krishna
S
,
Yossef
R
,
Parikh
NB
,
Chatani
PD
,
Zacharakis
N
, et al
.
Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers
.
Science
.
2022
;
375
(
6583
):
877
84
.
43.
Levin
N
,
Kim
SP
,
Marquardt
CA
,
Vale
NR
,
Yu
Z
,
Sindiri
S
, et al
.
Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes
.
J Immunother Cancer
.
2024
;
12
(
5
):
e008645
.
44.
Forget
MA
,
Tavera
RJ
,
Haymaker
C
,
Ramachandran
R
,
Malu
S
,
Zhang
M
, et al
.
A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes
.
Front Immunol
.
2017
;
8
:
908
.
45.
Tas
L
,
Jedema
I
,
Haanen
J
.
Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers
.
Curr Opin Oncol
.
2023
;
35
(
2
):
107
13
.
46.
Beane
JD
,
Lee
G
,
Zheng
Z
,
Mendel
M
,
Abate-Daga
D
,
Bharathan
M
, et al
.
Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma
.
Mol Ther
.
2015
;
23
(
8
):
1380
90
.
47.
Ritthipichai
K
,
Machin
M
,
Juillerat
A
,
Poirot
L
,
Fardis
M
,
Chartier
C
.
1052P Genetic Modification of Iovance’s TIL through TALEN-mediated knockout of PD-1 as a strategy to empower TIL therapy for cancer
.
Ann Oncol
.
2020
;
31
:
S720
.
48.
Chamberlain
CA
,
Bennett
EP
,
Kverneland
AH
,
Svane
IM
,
Donia
M
,
Met
Ö
.
Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy
.
Mol Ther Oncolytics
.
2022
;
24
:
417
28
.
49.
Lin
S
,
Martinez
G
,
Forget
MA
,
Adlerz
K
,
Ghose
M
,
Williams
L
, et al
.
Abstract 20: KSQ-001EX: an engineered TIL therapy manufactured from a clinical-scale, feeder-free process for the treatment of solid tumor indications
.
Cancer Res
.
2024
;
84
(
6_Suppl ment
):
20
.
50.
Burga
R
,
Khattar
M
,
Lajoie
S
,
Pedro
K
,
Foley
C
,
Ocando
AV
, et al
.
166 Genetically engineered tumor-infiltrating lymphocytes (cytoTIL15) exhibit IL-2-independent persistence and anti-tumor efficacy against melanoma in vivo
.
J ImmunoTherapy Cancer
.
2021
;
9
:
A176
.
51.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
,
Jakubowiak
A
,
Agha
M
,
Cohen
AD
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
24
.
52.
June
CH
,
Sadelain
M
.
Chimeric antigen receptor therapy
.
N Engl J Med
.
2018
;
379
(
1
):
64
73
.
53.
Majzner
RG
,
Mackall
CL
.
Clinical lessons learned from the first leg of the CAR T cell journey
.
Nat Med
.
2019
;
25
(
9
):
1341
55
.
54.
Munshi
NC
,
Anderson
LD
Jr
,
Shah
N
,
Madduri
D
,
Berdeja
J
,
Lonial
S
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
16
.
55.
Marofi
F
,
Motavalli
R
,
Safonov
VA
,
Thangavelu
L
,
Yumashev
AV
,
Alexander
M
, et al
.
CAR T cells in solid tumors: challenges and opportunities
.
Stem Cell Res Ther
.
2021
;
12
(
1
):
81
.
56.
Shah
PD
,
Huang
AC
,
Xu
X
,
Orlowski
R
,
Amaravadi
RK
,
Schuchter
LM
, et al
.
Phase I trial of autologous RNA-electroporated cMET-directed CAR T cells administered intravenously in patients with melanoma and breast carcinoma
.
Cancer Res Commun
.
2023
;
3
(
5
):
821
9
.
57.
Qi
C
,
Gong
J
,
Li
J
,
Liu
D
,
Qin
Y
,
Ge
S
, et al
.
Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results
.
Nat Med
.
2022
;
28
(
6
):
1189
98
.
58.
Qi
C
,
Xie
T
,
Zhou
J
,
Wang
X
,
Gong
J
,
Zhang
X
, et al
.
CT041 CAR T cell therapy for Claudin18.2-positive metastatic pancreatic cancer
.
J Hematol Oncol
.
2023
;
16
(
1
):
102
.
59.
Labanieh
L
,
Mackall
CL
.
CAR immune cells: design principles, resistance and the next generation
.
Nature
.
2023
;
614
(
7949
):
635
48
.
60.
Qi
C
,
Liu
C
,
Gong
J
,
Liu
D
,
Wang
X
,
Zhang
P
, et al
.
Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial final results
.
Nat Med
.
2024
;
30
(
8
):
2224
34
.
61.
Del Bufalo
F
,
De Angelis
B
,
Caruana
I
,
Del Baldo
G
,
De Ioris
MA
,
Serra
A
, et al
.
GD2-CART01 for relapsed or refractory high-risk neuroblastoma
.
N Engl J Med
.
2023
;
388
(
14
):
1284
95
.
62.
Zhao
Y
,
Shen
M
,
Wu
L
,
Yang
H
,
Yao
Y
,
Yang
Q
, et al
.
Stromal cells in the tumor microenvironment: accomplices of tumor progression
.
Cell Death Dis
.
2023
;
14
(
9
):
587
.
63.
Bughda
R
,
Dimou
P
,
D’Souza
RR
,
Klampatsa
A
.
Fibroblast activation protein (FAP)-Targeted CAR-T cells: launching an attack on tumor stroma
.
Immunotargets Ther
.
2021
;
10
:
313
23
.
64.
Petrausch
U
,
Schuberth
PC
,
Hagedorn
C
,
Soltermann
A
,
Tomaszek
S
,
Stahel
R
, et al
.
Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1)
.
BMC Cancer
.
2012
;
12
:
615
.
65.
Pircher
M
,
Schuberth
P
,
Gulati
P
,
Sulser
S
,
Weder
W
,
Curioni
A
, et al
.
FAP-specific re-directed T cells first in-man study in malignant pleural mesothelioma: experience of the first patient treated
.
J Immunother Cancer
.
2015
;
3
(
S2
):
P120
.
66.
Narayan
V
,
Barber-Rotenberg
JS
,
Jung
IY
,
Lacey
SF
,
Rech
AJ
,
Davis
MM
, et al
.
PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial
.
Nat Med
.
2022
;
28
(
4
):
724
34
.
67.
Pardoll
DM
.
The blockade of immune checkpoints in cancer immunotherapy
.
Nat Rev Cancer
.
2012
;
12
(
4
):
252
64
.
68.
Delgoffe
GM
,
Xu
C
,
Mackall
CL
,
Green
MR
,
Gottschalk
S
,
Speiser
DE
, et al
.
The role of exhaustion in CAR T cell therapy
.
Cancer Cell
.
2021
;
39
(
7
):
885
8
.
69.
Majzner
RG
,
Mackall
CL
.
Tumor antigen escape from CAR T-cell therapy
.
Cancer Discov
.
2018
;
8
(
10
):
1219
26
.
70.
Bielamowicz
K
,
Fousek
K
,
Byrd
TT
,
Samaha
H
,
Mukherjee
M
,
Aware
N
, et al
.
Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma
.
Neuro Oncol
.
2018
;
20
(
4
):
506
18
.
71.
Pang
N
,
Shi
J
,
Qin
L
,
Chen
A
,
Tang
Y
,
Yang
H
, et al
.
IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin
.
J Hematol Oncol
.
2021
;
14
(
1
):
118
.
72.
Uslu
U
,
Castelli
S
,
June
CH
.
CAR T cell combination therapies to treat cancer
.
Cancer Cell
.
2024
;
42
(
8
):
1319
25
.
73.
Adusumilli
PS
,
Zauderer
MG
,
Rivière
I
,
Solomon
SB
,
Rusch
VW
,
O’Cearbhaill
RE
, et al
.
A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab
.
Cancer Discov
.
2021
;
11
(
11
):
2748
63
.
74.
Curioni
A
,
Britschgi
C
,
Hiltbrunner
S
,
Bankel
L
,
Gulati
P
,
Weder
W
, et al
.
A phase I clinical trial of malignant pleural mesothelioma treated with locally delivered autologous anti-FAP-targeted CAR T-cells
.
Ann Oncol
.
2019
;
30
:
v501
.
75.
Gargett
T
,
Truong
NTH
,
Gardam
B
,
Yu
W
,
Ebert
LM
,
Johnson
A
, et al
.
Safety and biological outcomes following a phase 1 trial of GD2-specific CAR-T cells in patients with GD2-positive metastatic melanoma and other solid cancers
.
J Immunother Cancer
.
2024
;
12
(
5
):
e008659
.
76.
Haanen
JBAG
,
Mackensen
A
,
Schultze-Florey
C
,
Alsdorf
W
,
Wagner-Drouet
E
,
Heudobler
D
, et al
.
611O Updated results from BNT211-01 (NCT04503278), an ongoing, first-in-human, phase I study evaluating safety and efficacy of CLDN6 CAR T cells and a CLDN6-encoding mRNA vaccine in patients with relapsed/refractory CLDN6+ solid tumors
.
Ann Oncol
.
2024
;
35
:
S489
90
.
77.
Mackensen
A
,
Haanen
JBAG
,
Koenecke
C
,
Alsdorf
W
,
Wagner-Drouet
E
,
Borchmann
P
, et al
.
CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial
.
Nat Med
.
2023
;
29
(
11
):
2844
53
.
78.
Flugel
CL
,
Majzner
RG
,
Krenciute
G
,
Dotti
G
,
Riddell
SR
,
Wagner
DL
, et al
.
Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours
.
Nat Rev Clin Oncol
.
2023
;
20
(
1
):
49
62
.
79.
Morgan
RA
,
Yang
JC
,
Kitano
M
,
Dudley
ME
,
Laurencot
CM
,
Rosenberg
SA
.
Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2
.
Mol Ther
.
2010
;
18
(
4
):
843
51
.
80.
Ahmed
N
,
Brawley
VS
,
Hegde
M
,
Robertson
C
,
Ghazi
A
,
Gerken
C
, et al
.
Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma
.
J Clin Oncol
.
2015
;
33
(
15
):
1688
96
.
81.
Hegde
M
,
DeRenzo
CC
,
Zhang
H
,
Mata
M
,
Gerken
C
,
Shree
A
, et al
.
Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma
.
J Clin Oncol
.
2017
;
35
(
15_Suppl l
):
10508
.
82.
Ronsley
R
,
Bertrand
KC
,
Song
EZ
,
Timpanaro
A
,
Choe
M
,
Tlais
D
, et al
.
CAR T cell therapy for pediatric central nervous system tumors: a review of the literature and current North American trials
.
Cancer Metastasis Rev
.
2024
;
43
(
4
):
1205
16
.
83.
Bagley
SJ
,
Logun
M
,
Fraietta
JA
,
Wang
X
,
Desai
AS
,
Bagley
LJ
, et al
.
Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results
.
Nat Med
.
2024
;
30
(
5
):
1320
9
.
84.
Katz
SC
,
Hardaway
J
,
Prince
E
,
Guha
P
,
Cunetta
M
,
Moody
A
, et al
.
HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA(+) liver metastases
.
Cancer Gene Ther
.
2020
;
27
(
5
):
341
55
.
85.
Cherkassky
L
,
Hou
Z
,
Amador-Molina
A
,
Adusumilli
PS
.
Regional CAR T cell therapy: an ignition key for systemic immunity in solid tumors
.
Cancer Cell
.
2022
;
40
(
6
):
569
74
.
86.
Beatty
GL
,
Haas
AR
,
Maus
MV
,
Torigian
DA
,
Soulen
MC
,
Plesa
G
, et al
.
Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies
.
Cancer Immunol Res
.
2014
;
2
(
2
):
112
20
.
87.
Beatty
GL
,
O’Hara
MH
,
Lacey
SF
,
Torigian
DA
,
Nazimuddin
F
,
Chen
F
, et al
.
Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial
.
Gastroenterology
.
2018
;
155
(
1
):
29
32
.
88.
Tchou
J
,
Zhao
Y
,
Levine
BL
,
Zhang
PJ
,
Davis
MM
,
Melenhorst
JJ
, et al
.
Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer
.
Cancer Immunol Res
.
2017
;
5
(
12
):
1152
61
.
89.
Steffin
D
,
Ghatwai
N
,
Montalbano
A
,
Rathi
P
,
Courtney
AN
,
Arnett
AB
, et al
.
Interleukin-15-armored GPC3-CAR T cells for patients with solid cancers
.
Res Sq
.
2024
:rs.3.rs-4103623.
90.
Adusumilli
PS
,
Zauderer
MG
,
Rusch
VW
,
O’Cearbhaill
R
,
Zhu
A
,
Ngai
D
, et al
.
Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent
.
J Clin Oncol
.
2019
;
37
(
15_Suppl l
):
2511
.
91.
Johnson
LA
,
Morgan
RA
,
Dudley
ME
,
Cassard
L
,
Yang
JC
,
Hughes
MS
, et al
.
Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen
.
Blood
.
2009
;
114
(
3
):
535
46
.
92.
Morgan
RA
,
Dudley
ME
,
Wunderlich
JR
,
Hughes
MS
,
Yang
JC
,
Sherry
RM
, et al
.
Cancer regression in patients after transfer of genetically engineered lymphocytes
.
Science
.
2006
;
314
(
5796
):
126
9
.
93.
Robbins
PF
,
Kassim
SH
,
Tran
TLN
,
Crystal
JS
,
Morgan
RA
,
Feldman
SA
, et al
.
A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response
.
Clin Cancer Res
.
2015
;
21
(
5
):
1019
27
.
94.
Robbins
PF
,
Morgan
RA
,
Feldman
SA
,
Yang
JC
,
Sherry
RM
,
Dudley
ME
, et al
.
Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1
.
J Clin Oncol
.
2011
;
29
(
7
):
917
24
.
95.
Lu
YC
,
Parker
LL
,
Lu
T
,
Zheng
Z
,
Toomey
MA
,
White
DE
, et al
.
Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3
.
J Clin Oncol
.
2017
;
35
(
29
):
3322
9
.
96.
Morgan
RA
,
Chinnasamy
N
,
Abate-Daga
D
,
Gros
A
,
Robbins
PF
,
Zheng
Z
, et al
.
Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy
.
J Immunother
.
2013
;
36
(
2
):
133
51
.
97.
Parkhurst
MR
,
Yang
JC
,
Langan
RC
,
Dudley
ME
,
Nathan
DAN
,
Feldman
SA
, et al
.
T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis
.
Mol Ther
.
2011
;
19
(
3
):
620
6
.
98.
Linette
GP
,
Stadtmauer
EA
,
Maus
MV
,
Rapoport
AP
,
Levine
BL
,
Emery
L
, et al
.
Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma
.
Blood
.
2013
;
122
(
6
):
863
71
.
99.
Provasi
E
,
Genovese
P
,
Lombardo
A
,
Magnani
Z
,
Liu
PQ
,
Reik
A
, et al
.
Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer
.
Nat Med
.
2012
;
18
(
5
):
807
15
.
100.
Berdien
B
,
Mock
U
,
Atanackovic
D
,
Fehse
B
.
TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer
.
Gene Ther
.
2014
;
21
(
6
):
539
48
.
101.
Eyquem
J
,
Mansilla-Soto
J
,
Giavridis
T
,
van der Stegen
SJC
,
Hamieh
M
,
Cunanan
KM
, et al
.
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection
.
Nature
.
2017
;
543
(
7643
):
113
7
.
102.
Ruggiero
E
,
Carnevale
E
,
Prodeus
A
,
Magnani
ZI
,
Camisa
B
,
Merelli
I
, et al
.
CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function
.
Sci Transl Med
.
2022
;
14
(
631
):
eabg8027
.
103.
Schober
K
,
Müller
TR
,
Gökmen
F
,
Grassmann
S
,
Effenberger
M
,
Poltorak
M
, et al
.
Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function
.
Nat Biomed Eng
.
2019
;
3
(
12
):
974
84
.
104.
Ishihara
M
,
Kitano
S
,
Kageyama
S
,
Miyahara
Y
,
Yamamoto
N
,
Kato
H
, et al
.
NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome
.
J Immunother Cancer
.
2022
;
10
(
6
):
e003811
.
105.
Stadtmauer
EA
,
Fraietta
JA
,
Davis
MM
,
Cohen
AD
,
Weber
KL
,
Lancaster
E
, et al
.
CRISPR-engineered T cells in patients with refractory cancer
.
Science
.
2020
;
367
(
6481
):
eaba7365
.
106.
Kieke
MC
,
Sundberg
E
,
Shusta
EV
,
Mariuzza
RA
,
Wittrup
KD
,
Kranz
DM
.
High affinity T cell receptors from yeast display libraries block T cell activation by superantigens
.
J Mol Biol
.
2001
;
307
(
5
):
1305
15
.
107.
Pan
Q
,
Weng
D
,
Liu
J
,
Han
Z
,
Ou
Y
,
Xu
B
, et al
.
Phase 1 clinical trial to assess safety and efficacy of NY-ESO-1-specific TCR T cells in HLA-A *02:01 patients with advanced soft tissue sarcoma
.
Cell Rep Med
.
2023
;
4
(
8
):
101133
.
108.
Blumenschein
GR
,
Devarakonda
S
,
Johnson
M
,
Moreno
V
,
Gainor
J
,
Edelman
MJ
, et al
.
Phase I clinical trial evaluating the safety and efficacy of ADP-A2M10 SPEAR T cells in patients with MAGE-A10(+) advanced non-small cell lung cancer
.
J Immunother Cancer
.
2022
;
10
(
1
):
e003581
.
109.
Hong
DS
,
Butler
MO
,
Pachynski
RK
,
Sullivan
R
,
Kebriaei
P
,
Boross-Harmer
S
, et al
.
Phase 1 clinical trial evaluating the safety and anti-tumor activity of ADP-A2M10 SPEAR T-cells in patients with MAGE-a10+ head and neck, melanoma, or urothelial tumors
.
Front Oncol
.
2022
;
12
:
818679
.
110.
Hong
DS
,
Van Tine
BA
,
Olszanski
AJ
,
Johnson
ML
,
Liebner
DA
,
Trivedi
T
, et al
.
Phase I dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors
.
J Clin Oncol
.
2020
;
38
(
15_Suppl l
):
102
.
111.
Hong
DS
,
Van Tine
BA
,
Biswas
S
,
McAlpine
C
,
Johnson
ML
,
Olszanski
AJ
, et al
.
Autologous T cell therapy for MAGE-A4(+) solid cancers in HLA-A*02(+) patients: a phase 1 trial
.
Nat Med
.
2023
;
29
(
1
):
104
14
.
112.
D’Angelo
SP
,
Araujo
DM
,
Abdul Razak
AR
,
Agulnik
M
,
Attia
S
,
Blay
JY
, et al
.
Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial
.
Lancet
.
2024
;
403
(
10435
):
1460
71
.
113.
Singh
N
.
Approval of the first TCR-based cell therapy
.
Mol Ther
.
2024
;
32
(
10
):
3195
.
114.
Baulu
E
,
Gardet
C
,
Chuvin
N
,
Depil
S
.
TCR-engineered T cell therapy in solid tumors: state of the art and perspectives
.
Sci Adv
.
2023
;
9
(
7
):
eadf3700
.
115.
Chandran
SS
,
Klebanoff
CA
.
T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance
.
Immunol Rev
.
2019
;
290
(
1
):
127
47
.
116.
Klebanoff
CA
,
Gattinoni
L
,
Restifo
NP
.
Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy
.
J Immunother
.
2012
;
35
(
9
):
651
60
.
117.
Kaluza
KM
,
Thompson
JM
,
Kottke
TJ
,
Flynn Gilmer
HC
,
Knutson
DL
,
Vile
RG
.
Adoptive T cell therapy promotes the emergence of genomically altered tumor escape variants
.
Int J Cancer
.
2012
;
131
(
4
):
844
54
.
118.
Doran
SL
,
Stevanović
S
,
Adhikary
S
,
Gartner
JJ
,
Jia
L
,
Kwong
MLM
, et al
.
T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study
.
J Clin Oncol
.
2019
;
37
(
30
):
2759
68
.
119.
Nagarsheth
NB
,
Norberg
SM
,
Sinkoe
AL
,
Adhikary
S
,
Meyer
TJ
,
Lack
JB
, et al
.
TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers
.
Nat Med
.
2021
;
27
(
3
):
419
25
.
120.
Paulson
KG
,
Voillet
V
,
McAfee
MS
,
Hunter
DS
,
Wagener
FD
,
Perdicchio
M
, et al
.
Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA
.
Nat Commun
.
2018
;
9
(
1
):
3868
.
121.
Ma
Q
,
He
X
,
Zhang
B
,
Guo
F
,
Ou
X
,
Yang
Q
, et al
.
A PD-L1-targeting chimeric switch receptor enhances efficacy of CAR-T cell for pleural and peritoneal metastasis
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
380
.
122.
Hong
DS
,
Jalal
SI
,
Elimova
E
,
Ajani
JA
,
Blum Murphy
MA
,
Cervantes
A
, et al
.
SURPASS-2 trial design: a phase 2, open-label study of ADP-A2M4CD8 SPEAR T cells in advanced esophageal or esophagogastric junction cancers
.
J Clin Oncol
.
2022
;
40
(
4_Suppl l
):
TPS363
.
123.
Moore
K
,
Oaknin
A
,
Ray-Coquard
I
,
Coleman
RL
,
Herzog
TJ
,
O’malley
D
, et al
.
#24 A phase 2 study (GOG-3084) OF ADP-A2M4CD8 TCR T-cell therapy, alone or in combination with nivolumab, in patients with recurrent ovarian cancers
.
Int J Gynecol Cancer
.
2023
;
33
:
A407
8
.
124.
Hinrichs
CS
,
Borman
ZA
,
Cassard
L
,
Gattinoni
L
,
Spolski
R
,
Yu
Z
, et al
.
Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity
.
Proc Natl Acad Sci USA
.
2009
;
106
(
41
):
17469
74
.
125.
Chen
Y
,
Yu
F
,
Jiang
Y
,
Chen
J
,
Wu
K
,
Chen
X
, et al
.
Adoptive transfer of interleukin-21-stimulated human CD8+ T memory stem cells efficiently inhibits tumor growth
.
J Immunother
.
2018
;
41
(
6
):
274
83
.
126.
Hou
Y
,
Zak
J
,
Shi
Y
,
Pratumchai
I
,
Dinner
B
,
Wang
W
, et al
.
Transient EZH2 suppression by Tazemetostat during in vitro expansion maintains T cell stemness and improves adoptive T cell therapy
.
bioRxiv
.
2023
:
2023.02.07.527459
.
127.
Legscha
KJ
,
Antunes Ferreira
E
,
Chamoun
A
,
Lang
A
,
Awwad
MHS
,
Ton
GNHQ
, et al
.
Δ133p53α enhances metabolic and cellular fitness of TCR-engineered T cells and promotes superior antitumor immunity
.
J Immunother Cancer
.
2021
;
9
(
6
):
e001846
.
128.
Aggen
DH
,
Garcia
A
,
Saro Suarez
JM
,
Sauer
A
,
Cristiani
S
,
Elizabeth Brophy
F
, et al
.
New phase 1 SURPASS trial cohort: early-line ADP-A2M4CD8 T-cell receptor T-cell therapy plus pembrolizumab in urothelial carcinoma
. In:
2024 ASCO genitourinary cancers symposium
.
Journal of Clinical Oncology
;
2024
. p.
TPS708
.
129.
Nowicki
TS
,
Berent-Maoz
B
,
Cheung-Lau
G
,
Huang
RR
,
Wang
X
,
Tsoi
J
, et al
.
A pilot trial of the combination of transgenic NY-ESO-1-reactive adoptive cellular therapy with dendritic cell vaccination with or without ipilimumab
.
Clin Cancer Res
.
2019
;
25
(
7
):
2096
108
.
130.
Foy
SP
,
Jacoby
K
,
Bota
DA
,
Hunter
T
,
Pan
Z
,
Stawiski
E
, et al
.
Non-viral precision T cell receptor replacement for personalized cell therapy
.
Nature
.
2023
;
615
(
7953
):
687
96
.
131.
Leidner
R
,
Sanjuan Silva
N
,
Huang
H
,
Sprott
D
,
Zheng
C
,
Shih
YP
, et al
.
Neoantigen T-cell receptor gene therapy in pancreatic cancer
.
N Engl J Med
.
2022
;
386
(
22
):
2112
9
.
132.
Meng
F
,
Zhao
J
,
Tan
AT
,
Hu
W
,
Wang
SY
,
Jin
J
, et al
.
Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial
.
Hepatol Int
.
2021
;
15
(
6
):
1402
12
.
133.
Veatch
J
,
Paulson
K
,
Asano
Y
,
Martin
L
,
Lee
B
,
Thomas Hall
E
, et al
.
Merkel polyoma virus specific T-cell receptor transgenic T-cell therapy in PD-1 inhibitor refractory Merkel cell carcinoma
. In:
2022 ASCO annual meeting
.
Journal of Clinical Oncology
;
2022
. p.
9549
.
You do not currently have access to this content.