Background: The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide. Summary: Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy. Key Messages: In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence anti-tumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anti-cancer immunotherapy.

1.
Siegel
RL
,
Miller
KD
,
Fuchs
HE
,
Jemal
A
.
Cancer statistics, 2022
.
CA Cancer J Clin
.
2022
;
72
(
1
):
7
33
.
2.
Zhao
L
,
Liu
Y
,
Zhang
S
,
Wei
L
,
Cheng
H
,
Wang
J
, et al
.
Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer
.
Cell Death Dis
.
2022
;
13
(
4
):
378
.
3.
Tang
Z
,
Xu
Z
,
Zhu
X
,
Zhang
J
.
New insights into molecules and pathways of cancer metabolism and therapeutic implications
.
Cancer Commun
.
2021
;
41
(
1
):
16
36
.
4.
Devic
S
.
Warburg effect - a consequence or the cause of carcinogenesis
.
J Cancer
.
2016
;
7
(
7
):
817
22
.
5.
Fernández
LP
,
Gómez de Cedrón
M
,
Ramírez de Molina
A
.
Alterations of lipid metabolism in cancer: implications in prognosis and treatment
.
Front Oncol
.
2020
;
10
:
577420
.
6.
Chen
Y
,
Ren
B
,
Yang
J
,
Wang
H
,
Yang
G
,
Xu
R
, et al
.
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management
.
Signal Transduct Target Ther
.
2020
;
5
(
1
):
143
.
7.
Darvin
P
,
Toor
SM
,
Sasidharan Nair
V
,
Elkord
E
.
Immune checkpoint inhibitors: recent progress and potential biomarkers
.
Exp Mol Med
.
2018
;
50
(
12
):
1
11
.
8.
Quezada
SA
,
Peggs
KS
,
Simpson
TR
,
Allison
JP
.
Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication
.
Immunol Rev
.
2011
;
241
(
1
):
104
18
.
9.
Park
R
,
Williamson
S
,
Kasi
A
,
Saeed
A
.
Immune therapeutics in the treatment of advanced gastric and esophageal cancer
.
Anticancer Res
.
2018
;
38
(
10
):
5569
80
.
10.
Emambux
S
,
Tachon
G
,
Junca
A
,
Tougeron
D
.
Results and challenges of immune checkpoint inhibitors in colorectal cancer
.
Expert Opin Biol Ther
.
2018
;
18
(
5
):
561
73
.
11.
Topper
MJ
,
Vaz
M
,
Marrone
KA
,
Brahmer
JR
,
Baylin
SB
.
The emerging role of epigenetic therapeutics in immuno-oncology
.
Nat Rev Clin Oncol
.
2020
;
17
(
2
):
75
90
.
12.
Chang
C-H
,
Qiu
J
,
O’Sullivan
D
,
Buck
MD
,
Noguchi
T
,
Curtis
JD
, et al
.
Metabolic competition in the tumor microenvironment is a driver of cancer progression
.
Cell
.
2015
;
162
(
6
):
1229
41
.
13.
Yang
J
,
Wen
J
,
Tian
T
,
Lu
Z
,
Wang
Y
,
Wang
Z
, et al
.
GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer
.
Oncotarget
.
2017
;
8
(
7
):
11788
96
.
14.
Yao
X
,
He
Z
,
Qin
C
,
Deng
X
,
Bai
L
,
Li
G
, et al
.
SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer
.
Cancer Cel Int
.
2020
;
20
:
503
.
15.
He
Z
,
Chen
D
,
Wu
J
,
Sui
C
,
Deng
X
,
Zhang
P
, et al
.
Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages
.
Arch Biochem Biophys
.
2021
:
702
.
16.
Zeng
D
,
Wang
M
,
Wu
J
,
Lin
S
,
Ye
Z
,
Zhou
R
, et al
.
Immunosuppressive microenvironment revealed by immune cell landscape in pre-metastatic liver of colorectal cancer
.
Front Oncol
.
2021
;
11
:
620688
.
17.
Tuo
Y
,
Zhang
Z
,
Tian
C
,
Hu
Q
,
Xie
R
,
Yang
J
, et al
.
Anti-inflammatory and metabolic reprogramming effects of MENK produce antitumor response in CT26 tumor-bearing mice
.
J Leukoc Biol
.
2020
;
108
(
1
):
215
28
.
18.
Zhou
X
,
Fang
D
,
Liu
H
,
Ou
X
,
Zhang
C
,
Zhao
Z
, et al
.
PMN-MDSCs accumulation induced by CXCL1 promotes CD8+ T cells exhaustion in gastric cancer
.
Cancer Lett
.
2022
;
532
:
215598
.
19.
DeVorkin
L
,
Pavey
N
,
Carleton
G
,
Comber
A
,
Ho
C
,
Lim
J
, et al
.
Autophagy regulation of metabolism is required for CD8+ T cell anti-tumor immunity
.
Cell Rep
.
2019
;
27
(
2
):
502
13.e5
.
20.
Wei
J
,
Long
L
,
Yang
K
,
Guy
C
,
Shrestha
S
,
Chen
Z
, et al
.
Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
.
Nat Immunol
.
2016
;
17
(
3
):
277
85
.
21.
Lu
Y
,
Li
Y
,
Liu
Q
,
Tian
N
,
Du
P
,
Zhu
F
, et al
.
MondoA-thioredoxin-interacting protein Axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment
.
Gastroenterology
.
2021
;
161
(
2
):
575
91.e16
.
22.
Jia
L
,
Gao
Y
,
Zhou
T
,
Zhao
XL
,
Hu
HY
,
Chen
DW
, et al
.
Enhanced response to PD-L1 silencing by modulation of TME via balancing glucose metabolism and robust co-delivery of siRNA/Resveratrol with dual-responsive polyplexes
.
Biomaterials
.
2021
;
271
:
120711
.
23.
Anastasiadou
E
,
Jacob
LS
,
Slack
FJ
.
Non-coding RNA networks in cancer
.
Nat Rev Cancer
.
2018
;
18
(
1
):
5
18
.
24.
Yan
H
,
Bu
P
.
Non-coding RNA in cancer
.
Essays Biochem
.
2021
;
65
(
4
):
625
39
.
25.
Zhang
Y
,
Huo
W
,
Sun
L
,
Wu
J
,
Zhang
C
,
Wang
H
, et al
.
Targeting miR-148b-5p inhibits immunity microenvironment and gastric cancer progression
.
Front Immunol
.
2021
;
12
:
590447
.
26.
Sun
L
,
Li
J
,
Yan
W
,
Yao
Z
,
Wang
R
,
Zhou
X
, et al
.
H19 promotes aerobic glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase A axis
.
Cancer Sci
.
2021
;
112
(
6
):
2245
59
.
27.
Chen
C
,
Wei
M
,
Wang
C
,
Sun
D
,
Liu
P
,
Zhong
X
, et al
.
Long noncoding RNA KCNQ1OT1 promotes colorectal carcinogenesis by enhancing aerobic glycolysis via hexokinase-2
.
Aging
.
2020
;
12
(
12
):
11685
97
.
28.
Lin
Z-B
,
Long
P
,
Zhao
Z
,
Zhang
YR
,
Chu
XD
,
Zhao
XX
, et al
.
Long noncoding RNA KCNQ1OT1 is a prognostic biomarker and mediates CD8+ T cell exhaustion by regulating CD155 expression in colorectal cancer
.
Int J Biol Sci
.
2021
;
17
(
7
):
1757
68
.
29.
Zhang
T
,
Zhang
Z
,
Li
F
,
Ping
Y
,
Qin
G
,
Zhang
C
, et al
.
miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism
.
J Immunol
.
2018
;
201
(
7
):
2165
75
.
30.
Wang
Y
,
Yu
G
,
Liu
Y
,
Xie
L
,
Ge
J
,
Zhao
G
, et al
.
Hypoxia-induced PTTG3P contributes to colorectal cancer glycolysis and M2 phenotype of macrophage
.
Biosci Rep
.
2021
;
41
(
7
).
31.
Yi
B
,
Dai
K
,
Yan
Z
,
Yin
Z
.
Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages
.
Bioengineered
.
2022
;
13
(
3
):
6243
56
.
32.
Lv
L
,
Xu
YP
,
Zhao
D
,
Li
FL
,
Wang
W
,
Sasaki
N
, et al
.
Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization
.
Mol Cell
.
2013
;
52
(
3
):
340
52
.
33.
Zhang
W
,
Zhang
X
,
Huang
S
,
Chen
J
,
Ding
P
,
Wang
Q
, et al
.
FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis
.
Mol Oncol
.
2021
;
15
(
5
):
1466
85
.
34.
Yue
G
,
Tang
J
,
Zhang
L
,
Niu
H
,
Li
H
,
Luo
S
.
CD276 suppresses CAR-T cell function by promoting tumor cell glycolysis in esophageal squamous cell carcinoma
.
J Gastrointest Oncol
.
2021
;
12
(
1
):
38
51
.
35.
Palsson-McDermott
EM
,
Dyck
L
,
Zasłona
Z
,
Menon
D
,
McGettrick
AF
,
Mills
KHG
, et al
.
Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors
.
Front Immunol
.
2017
;
8
:
1300
.
36.
Shan
Y
,
Ni
Q
,
Zhang
Q
,
Zhang
M
,
Wei
B
,
Cheng
L
, et al
.
Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment
.
Acta Pharm Sin B
.
2022
;
12
(
4
):
1825
39
.
37.
Tu
CE.
,
Hu
Y
,
Zhou
P
,
Guo
X
,
Gu
C
,
Zhang
Y
, et al
.
Lactate and TGF-β antagonistically regulate inflammasome activation in the tumor microenvironment
.
J Cell Physiol
.
2021
;
236
(
6
):
4528
37
.
38.
Moaaz
M
,
Lotfy
H
,
Elsherbini
B
,
Motawea
MA
,
Fadali
G
.
TGF-β enhances the anti-inflammatory effect of tumor- infiltrating CD33+11b+HLA-DR myeloid-derived suppressor cells in gastric cancer: a possible relation to MicroRNA-494
.
Asian Pac J Cancer Prev
.
2020
;
21
(
11
):
3393
403
.
39.
Huntington
KE
,
Louie
A
,
Zhou
L
,
Seyhan
AA
,
Maxwell
AW
,
El-Deiry
WS
.
Colorectal cancer extracellular acidosis decreases immune cell killing and is partially ameliorated by pH-modulating agents that modify tumor cell cytokine profiles
.
Am J Cancer Res
.
2022
;
12
(
1
):
138
51
.
40.
Harmon
C
,
Robinson
MW
,
Hand
F
,
Almuaili
D
,
Mentor
K
,
Houlihan
DD
, et al
.
Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis
.
Cancer Immunol Res
.
2019
;
7
(
2
):
335
46
.
41.
Pilon-Thomas
S
,
Kodumudi
KN
,
El-Kenawi
AE
,
Russell
S
,
Weber
AM
,
Luddy
K
, et al
.
Neutralization of tumor acidity improves antitumor responses to immunotherapy
.
Cancer Res
.
2016
;
76
(
6
):
1381
90
.
42.
Zhang
L
,
Li
S
.
Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer
.
Exp Cel Res
.
2020
;
388
(
2
):
111846
.
43.
Kumagai
S
,
Koyama
S
,
Itahashi
K
,
Tanegashima
T
,
Lin
YT
,
Togashi
Y
, et al
.
Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments
.
Cancer Cell
.
2022
;
40
(
2
):
201
18.e9
.
44.
Murray
CM
,
Hutchinson
R
,
Bantick
JR
,
Belfield
GP
,
Benjamin
AD
,
Brazma
D
, et al
.
Monocarboxylate transporter MCT1 is a target for immunosuppression
.
Nat Chem Biol
.
2005
;
1
(
7
):
371
6
.
45.
Matsushita
Y
,
Nakagawa
H
,
Koike
K
.
Lipid metabolism in oncology: why it matters, how to research, and how to treat
.
Cancers
.
2021
;
13
(
3
):
474
.
46.
Fu
Y
,
Zou
T
,
Shen
X
,
Nelson
PJ
,
Li
J
,
Wu
C
, et al
.
Lipid metabolism in cancer progression and therapeutic strategies
.
Medcomm
.
2021
;
2
(
1
):
27
59
.
47.
Zhang
D
,
Shi
R
,
Xiang
W
,
Kang
X
,
Tang
B
,
Li
C
, et al
.
The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages
.
Signal Transduct Target Ther
.
2020
;
5
(
1
):
24
.
48.
Currie
E
,
Schulze
A
,
Zechner
R
,
Walther
TC
,
Farese
RV
Jr
.
Cellular fatty acid metabolism and cancer
.
Cell Metab
.
2013
;
18
(
2
):
153
61
.
49.
Yeh
C-S
,
Wang
JY
,
Cheng
TL
,
Juan
CH
,
Wu
CH
,
Lin
SR
.
Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis
.
Cancer Lett
.
2006
;
233
(
2
):
297
308
.
50.
MacIver
NJ
,
Michalek
RD
,
Rathmell
JC
.
Metabolic regulation of T lymphocytes
.
Annu Rev Immunol
.
2013
;
31
:
259
83
.
51.
Xiang
W
,
Shi
R
,
Kang
X
,
Zhang
X
,
Chen
P
,
Zhang
L
, et al
.
Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression
.
Nat Commun
.
2018
;
9
(
1
):
2574
.
52.
Shang
S
,
Ji
X
,
Zhang
L
,
Chen
J
,
Li
C
,
Shi
R
, et al
.
Macrophage ABHD5 suppresses NF kappa B-dependent matrix metalloproteinase expression and cancer metastasis
.
Cancer Res
.
2019
;
79
(
21
):
5513
26
.
53.
Ringel
AE
,
Drijvers
JM
,
Baker
GJ
,
Catozzi
A
,
García-Cañaveras
JC
,
Gassaway
BM
, et al
.
Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity
.
Cell
.
2020
;
183
(
7
):
1848
66.e26
.
54.
Kumagai
S
,
Togashi
Y
,
Sakai
C
,
Kawazoe
A
,
Kawazu
M
,
Ueno
T
, et al
.
An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells
.
Immunity
.
2020
;
53
(
1
):
187
203.e8
.
55.
Xu
LN
,
Xu
YY
,
Li
GP
,
Yang
B
.
Effect of postoperative ω-3 fatty acid immunonutritional therapy on NK cell gene methylation in elderly patients with gastric cancer
.
Curr Med Sci
.
2022
;
42
(
2
):
373
8
.
56.
Hossain
F
,
Al-Khami
AA
,
Wyczechowska
D
,
Hernandez
C
,
Zheng
L
,
Reiss
K
, et al
.
Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
.
Cancer Immunol Res
.
2015
;
3
(
11
):
1236
47
.
57.
Lin
R
,
Zhang
H
,
Yuan
Y
,
He
Q
,
Zhou
J
,
Li
S
, et al
.
Fatty acid oxidation controls CD8(+) tissue-resident memory T-cell survival in gastric adenocarcinoma
.
Cancer Immunol Res
.
2020
;
8
(
4
):
479
92
.
58.
Ding
X
,
Zhang
W
,
Li
S
,
Yang
H
.
The role of cholesterol metabolism in cancer
.
Am J Cancer Res
.
2019
;
9
(
2
):
219
27
.
59.
Liu
C
,
Yao
Z
,
Wang
J
,
Zhang
W
,
Yang
Y
,
Zhang
Y
, et al
.
Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway
.
Cell Death Differ
.
2020
;
27
(
6
):
1765
81
.
60.
Du
Q
,
Wang
Q
,
Fan
H
,
Wang
J
,
Liu
X
,
Wang
H
, et al
.
Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome
.
Biochem Pharmacol
.
2016
;
105
:
42
54
.
61.
Ma
X
,
Bi
E
,
Lu
Y
,
Su
P
,
Huang
C
,
Liu
L
, et al
.
Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment
.
Cel Metab
.
2019
;
30
(
1
):
143
56.e5
.
62.
Dong
L
,
Yang
X
,
Wang
Y
,
Jin
Y
,
Zhou
Q
,
Chen
G
, et al
.
Key markers involved in the anticolon cancer response of CD8+ T cells through the regulation of cholesterol metabolism
.
J Oncol
.
2021
;
2021
:
9398661
.
63.
Ni
W
,
Mo
H
,
Liu
Y
,
Xu
Y
,
Qin
C
,
Zhou
Y
, et al
.
Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA SNHG29-mediated YAP activation
.
Mol Ther
.
2021
;
29
(
10
):
2995
3010
.
64.
Fan
J
,
Kamphorst
JJ
,
Mathew
R
,
Chung
MK
,
White
E
,
Shlomi
T
, et al
.
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
.
Mol Syst Biol
.
2013
;
9
:
712
.
65.
Hensley
CT
,
Wasti
AT
,
DeBerardinis
RJ
.
Glutamine and cancer: cell biology, physiology, and clinical opportunities
.
J Clin Invest
.
2013
;
123
(
9
):
3678
84
.
66.
Sun
H
,
Zhang
C
,
Zheng
Y
,
Liu
C
,
Wang
X
,
Cong
X
.
Glutamine deficiency promotes recurrence and metastasis in colorectal cancer through enhancing epithelial-mesenchymal transition
.
J Transl Med
.
2022
;
20
(
1
):
330
.
67.
Li
LB
,
Fang
TY
,
Xu
WJ
.
Oral glutamine inhibits tumor growth of gastric cancer bearing mice by improving immune function and activating apoptosis pathway
.
Tissue Cell
.
2021
;
71
:
101508
.
68.
Wise
DR
,
DeBerardinis
RJ
,
Mancuso
A
,
Sayed
N
,
Zhang
XY
,
Pfeiffer
HK
, et al
.
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
48
):
18782
7
.
69.
Huang
D
,
Wang
Y
,
Thompson
JW
,
Yin
T
,
Alexander
PB
,
Qin
D
, et al
.
Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression
.
Nat Cell Biol
.
2022
;
24
(
2
):
230
41
.
70.
Gilardi
M
,
Ramos
M
,
Hollern
D
.
B cells secrete GABA, which provokes a pro-tumor immune microenvironment
.
Cancer Cell
.
2022
;
40
(
1
):
17
9
.
71.
Chen
CL
,
Hsu
SC
,
Ann
DK
,
Yen
Y
,
Kung
HJ
.
Arginine signaling and cancer metabolism
.
Cancers
.
2021
;
13
(
14
):
3541
.
72.
Chen
X
,
Jiang
J
,
Liu
H
,
Li
A
,
Wang
W
,
Ni
Z
, et al
.
MSR1 characterized by chromatin accessibility mediates M2 macrophage polarization to promote gastric cancer progression
.
Int Immunopharmacol
.
2022
;
112
:
109217
.
73.
Angka
L
,
Tanese de Souza
C
,
Baxter
KE
,
Khan
ST
,
Market
M
,
Martel
AB
, et al
.
Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery
.
Mol Ther
.
2022
;
30
(
10
):
3270
83
.
74.
Martí i Líndez
A-A
,
Dunand-Sauthier
I
,
Conti
M
,
Gobet
F
,
Núñez
N
,
Hannich
JT
, et al
.
Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy
.
JCI Insight
.
2019
;
4
(
24
):
e132975
.
75.
Jang
TJ
,
Kim
SA
,
Kim
MK
.
Increased number of arginase 1-positive cells in the stroma of carcinomas compared to precursor lesions and nonneoplastic tissues
.
Pathol Res Pract
.
2018
;
214
(
8
):
1179
84
.
76.
Alexandrou
C
,
Al-Aqbi
SS
,
Higgins
JA
,
Boyle
W
,
Karmokar
A
,
Andreadi
C
, et al
.
Sensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymes
.
Sci Rep
.
2018
;
8
(
1
):
12096
.
77.
Szefel
J
,
Ślebioda
T
,
Walczak
J
,
Kruszewski
WJ
,
Szajewski
M
,
Ciesielski
M
, et al
.
The effect of L-arginine supplementation and surgical trauma on the frequency of myeloid-derived suppressor cells and T lymphocytes in tumour and blood of colorectal cancer patients
.
Adv Med Sci
.
2022
;
67
(
1
):
66
78
.
78.
Puccetti
P
,
Fallarino
F
,
Italiano
A
,
Soubeyran
I
,
MacGrogan
G
,
Debled
M
, et al
.
Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers
.
PLoS One
.
2015
;
10
(
4
):
e0122046
.
79.
Ferdinande
L
,
Decaestecker
C
,
Verset
L
,
Mathieu
A
,
Moles Lopez
X
,
Negulescu
AM
, et al
.
Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer
.
Br J Cancer
.
2012
;
106
(
1
):
141
7
.
80.
Wu
D
,
Zhu
Y
.
Role of kynurenine in promoting the generation of exhausted CD8+ T cells in colorectal cancer
.
Am J Transl Res
.
2021
;
13
(
3
):
1535
47
.
81.
Zhang
X
,
Liu
X
,
Zhou
W
,
Du
Q
,
Yang
M
,
Ding
Y
, et al
.
Blockade of IDO-kynurenine-AhR Axis ameliorated colitis-associated colon cancer via inhibiting immune tolerance
.
Cell Mol Gastroenterol Hepatol
.
2021
;
12
(
4
):
1179
99
.
82.
Wu
D
,
Wang
Z
.
Gastric cancer cell-derived kynurenines hyperactive regulatory T cells to promote chemoresistance via the IL-10/STAT3/BCL2 signaling pathway
.
DNA Cell Biol
.
2022
;
41
(
4
):
447
55
.
83.
Huang
Q
,
Xia
J
,
Wang
L
,
Wang
X
,
Ma
X
,
Deng
Q
, et al
.
miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy
.
J Hematol Oncol
.
2018
;
11
(
1
):
58
.
84.
Shi
J
,
Liu
C
,
Luo
S
,
Cao
T
,
Lin
B
,
Zhou
M
, et al
.
STING agonist and Ido inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer
.
Cell Immunol
.
2021
;
366
:
104384
.
85.
Shi
D
,
Wu
X
,
Jian
Y
,
Wang
J
,
Huang
C
,
Mo
S
, et al
.
USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer
.
Nat Commun
.
2022
;
13
(
1
):
5644
.
86.
McKinney
EF
,
Smith
KGC
.
Metabolic exhaustion in infection, cancer and autoimmunity
.
Nat Immunol
.
2018
;
19
(
3
):
213
21
.
87.
Chang
CH
,
Curtis
JD
,
Maggi
LB
Jr
,
Faubert
B
,
Villarino
AV
,
O’Sullivan
D
, et al
.
Posttranscriptional control of T cell effector function by aerobic glycolysis
.
Cell
.
2013
;
153
(
6
):
1239
51
.
88.
Wu
Z
,
Huang
H
,
Han
Q
,
Hu
Z
,
Teng
XL
,
Ding
R
, et al
.
SENP7 senses oxidative stress to sustain metabolic fitness and antitumor functions of CD8+ T cells
.
J Clin Invest
.
2022
;
132
(
7
):
e155224
.
89.
Shao
Q
,
Wang
L
,
Yuan
M
,
Jin
X
,
Chen
Z
,
Wu
C
.
TIGIT induces (CD3+) T cell dysfunction in colorectal cancer by inhibiting glucose metabolism
.
Front Immunol
.
2021
;
12
:
688961
.
90.
Wang
F
,
Zhang
Y
,
Yu
X
,
Teng
XL
,
Ding
R
,
Hu
Z
, et al
.
ZFP91 disturbs metabolic fitness and antitumor activity of tumor-infiltrating T cells
.
J Clin Invest
.
2021
;
131
(
19
):
e144318
.
91.
Dumauthioz
N
,
Tschumi
B
,
Wenes
M
,
Marti
B
,
Wang
H
,
Franco
F
, et al
.
Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity
.
Cell Mol Immunol
.
2021
;
18
(
7
):
1761
71
.
92.
Chowdhury
PS
,
Chamoto
K
,
Kumar
A
,
Honjo
T
.
PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy
.
Cancer Immunol Res
.
2018
;
6
(
11
):
1375
87
.
93.
Sabharwal
SS
,
Rosen
DB
,
Grein
J
,
Tedesco
D
,
Joyce-Shaikh
B
,
Ueda
R
, et al
.
GITR agonism enhances cellular metabolism to support CD8+ T-cell proliferation and effector cytokine production in a mouse tumor model
.
Cancer Immunol Res
.
2018
;
6
(
10
):
1199
211
.
94.
Strauss
L
,
Mahmoud
MAA
,
Weaver
JD
,
Tijaro-Ovalle
NM
,
Christofides
A
,
Wang
Q
, et al
.
Targeted deletion of PD-1 in myeloid cells induces antitumor immunity
.
Sci Immunol
.
2020
;
5
(
43
):
eaay1863
.
95.
Wang
G
,
Wang
YZ
,
Yu
Y
,
Yin
PH
,
Xu
K
,
Zhang
H
.
The anti-tumor effect and mechanism of triterpenoids in Rhus chinensis mill. On reversing effector CD8+ T-cells dysfunction by targeting glycolysis pathways in colorectal cancer
.
Integr Cancer Ther
.
2021
;
20
:
15347354211017219
.
96.
He
Y
,
Fang
Y
,
Zhang
M
,
Zhao
Y
,
Tu
B
,
Shi
M
, et al
.
Remodeling “cold” tumor immune microenvironment via epigenetic-based therapy using targeted liposomes with in situ formed albumin corona
.
Acta Pharm Sin B
.
2022
;
12
(
4
):
2057
73
.
97.
Guo
Y
,
Xie
YQ
,
Gao
M
,
Zhao
Y
,
Franco
F
,
Wenes
M
, et al
.
Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity
.
Nat Immunol
.
2021
;
22
(
6
):
746
56
.
98.
Xiang
Z
,
Zhou
Z
,
Song
S
,
Li
J
,
Ji
J
,
Yan
R
, et al
.
Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways
.
Oncogene
.
2021
;
40
(
31
):
5002
12
.
99.
Cheong
JE
,
Sun
L
.
Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities
.
Trends Pharmacol Sci
.
2018
;
39
(
3
):
307
25
.
100.
Li
Q
,
Su
R
,
Bao
X
,
Cao
K
,
Du
Y
,
Wang
N
, et al
.
Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy
.
Acta Biomater
.
2022
;
144
:
109
20
.
101.
Li
J
,
Zhao
M
,
Sun
M
,
Wu
S
,
Zhang
H
,
Dai
Y
, et al
.
Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment
.
ACS Appl Mater Inter
.
2020
;
12
(
45
):
50734
47
.
102.
Al-Husein
BA
,
Dawah
B
,
Bani-Hani
S
,
Al Bashir
SM
,
Al-Sawalmeh
KM
,
Ayoub
NM
.
Immunomodulatory effect of statins on Regulatory T Lymphocytes in human colorectal cancer is determined by the stage of disease
.
Oncotarget
.
2018
;
9
(
87
):
35752
61
.
103.
Renner
K
,
Bruss
C
,
Schnell
A
,
Koehl
G
,
Becker
HM
,
Fante
M
, et al
.
Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy
.
Cell Rep
.
2019
;
29
(
1
):
135
50.e9
.
104.
Lee
B
,
Park
SJ
,
Lee
S
,
Lee
J
,
Lee
E
,
Yoo
ES
, et al
.
Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR
.
Cell Death Dis
.
2022
;
13
(
7
):
603
.
105.
Cui
C
,
Feng
H
,
Shi
X
,
Wang
Y
,
Feng
Z
,
Liu
J
, et al
.
Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10
.
Int Immunopharmacol
.
2015
;
27
(
1
):
110
21
.
106.
Zhang
N
,
Liu
C
,
Jin
L
,
Zhang
R
,
Wang
T
,
Wang
Q
, et al
.
Ketogenic diet elicits antitumor properties through inducing oxidative stress, inhibiting MMP-9 expression, and rebalancing M1/M2 tumor-associated macrophage phenotype in a mouse model of colon cancer
.
J Agric Food Chem
.
2020
;
68
(
40
):
11182
96
.
107.
Warmoes
MO
,
Locasale
JW
.
Heterogeneity of glycolysis in cancers and therapeutic opportunities
.
Biochem Pharmacol
.
2014
;
92
(
1
):
12
21
.
108.
Wikoff
WR
,
Anfora
AT
,
Liu
J
,
Schultz
PG
,
Lesley
SA
,
Peters
EC
, et al
.
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
.
Proc Natl Acad Sci USA
.
2009
;
106
(
10
):
3698
703
.
109.
Bachem
A
,
Makhlouf
C
,
Binger
KJ
,
de Souza
DP
,
Tull
D
,
Hochheiser
K
, et al
.
Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells
.
Immunity
.
2019
;
51
(
2
):
285
97.e5
.
110.
Luu
M
,
Weigand
K
,
Wedi
F
,
Breidenbend
C
,
Leister
H
,
Pautz
S
, et al
.
Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate
.
Sci Rep
.
2018
;
8
(
1
):
14430
.
111.
Furusawa
Y
,
Obata
Y
,
Fukuda
S
,
Endo
TA
,
Nakato
G
,
Takahashi
D
, et al
.
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
.
Nature
.
2013
;
504
(
7480
):
446
50
.
112.
Pauken
KE
,
Sammons
MA
,
Odorizzi
PM
,
Manne
S
,
Godec
J
,
Khan
O
, et al
.
Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade
.
Science
.
2016
;
354
(
6316
):
1160
5
.
113.
Hofer
F
,
Di Sario
G
,
Musiu
C
,
Sartoris
S
,
De Sanctis
F
,
Ugel
S
.
A complex metabolic network confers immunosuppressive functions to myeloid-derived suppressor cells (MDSCs) within the tumour microenvironment
.
Cells
.
2021
;
10
(
10
):
2700
.
114.
Tran Janco
JM
,
Lamichhane
P
,
Karyampudi
L
,
Knutson
KL
.
Tumor-infiltrating dendritic cells in cancer pathogenesis
.
J Immunol
.
2015
;
194
(
7
):
2985
91
.
115.
Chen
S
,
Cui
W
,
Chi
Z
,
Xiao
Q
,
Hu
T
,
Ye
Q
, et al
.
Tumor-associated macrophages are shaped by intratumoral high potassium via Kir2.1
.
Cell Metab
.
2022
;
34
(
11
):
1843
59.e11
.
You do not currently have access to this content.