Objective: Golgi alpha-mannosidase II (GM II) is one of the crucial enzymes in the process of N-glycan processing. The aim of our study was to examine the clinical significance of GM II in patients with clear cell renal cell carcinoma (ccRCC). Methods: Quantitative reverse transcription polymerase chain reaction analysis and immunohistochemical staining were used to analyze GM II expression in patients with ccRCC. The clinical data of 62 patients with ccRCC were collected to analyze the clinical significance of GM II. The clinical significance among GM II expression, clinicopathological staging, and histological grade of ccRCC was explored. Survival analyses were performed to identify the relevance between the expression of GM II and the overall survival of patients with ccRCC. A uni-/multivariate Cox regression model was used to detect risk factors affecting the prognosis of patients with ccRCC. Subsequently, the proliferation and migration of ccRCC cells were detected after transfecting with GM II-short hairpin RNA (shRNA). Results: The results of these comparisons suggested that GM II expression of ccRCC tissues was dramatically higher than that of para-carcinoma tissues (p < 0.05). GM II expression in the high-differentiation group was lower than that in the median- and low-differentiation groups (p < 0.05). GM II expression in stage I and II tissues was lower than that in stage III and IV tissues (p < 0.05). The expression levels of GM II in the group without lymph node metastasis were lower than those in the group with lymph node metastasis (p < 0.05). Survival analysis indicated that patients with ccRCC with high GM II expression generally had decreased overall survival. Uni-/multivariate Cox model analyses further suggested an association between GM II expression and prognosis of patients with breast cancer. High GM II expression is a potential and independent prognostic biomarker in ccRCC. The inhibition of GM II by transfecting with GM II-shRNA could reduce the proliferation and migration of ccRCC. Conclusion: GM II expression in human ccRCC tissues was upregulated compared with that found in normal human renal tissue, and GM II may promote the progression and migration of ccRCC. Furthermore, the GM II gene may be used as a promising tumor marker for the diagnosis and prognosis of ccRCC.

1.
Siegel
RL
,
Miller
KD
,
Jemal
A
.
Cancer statistics, 2016
.
CA Cancer J Clin
.
2016
Jan-Feb
;
66
(
1
):
7
30
.
[PubMed]
0007-9235
2.
Bhatt
JR
,
Finelli
A
.
Landmarks in the diagnosis and treatment of renal cell carcinoma
.
Nat Rev Urol
.
2014
Sep
;
11
(
9
):
517
25
.
[PubMed]
1759-4812
3.
Chow
WH
,
Dong
LM
,
Devesa
SS
.
Epidemiology and risk factors for kidney cancer
.
Nat Rev Urol
.
2010
May
;
7
(
5
):
245
57
.
[PubMed]
1759-4812
4.
Apollonio
G
,
Raimondi
A
,
Verzoni
E
,
Claps
M
,
Sepe
P
,
Pagani
F
, et al.
.
The role of metastasectomy in advanced renal cell carcinoma
.
Expert Rev Anticancer Ther
.
2019
Jul
;
19
(
7
):
603
11
.
[PubMed]
1473-7140
5.
Rini
BI
,
Campbell
SC
,
Escudier
B
.
Renal cell carcinoma
.
Lancet
.
2009
Mar
;
373
(
9669
):
1119
32
.
[PubMed]
0140-6736
6.
Takagi
T
,
Fukuda
H
,
Kondo
T
,
Ishihara
H
,
Yoshida
K
,
Kobayashi
H
, et al.
.
Prognostic Markers for Refined Stratification of IMDC Intermediate-Risk Metastatic Clear Cell Renal Cell Carcinoma Treated with First-Line Tyrosine Kinase Inhibitor Therapy
.
Target Oncol
.
2019
Apr
;
14
(
2
):
179
86
.
[PubMed]
1776-2596
7.
Klatte
T
,
Stewart
GD
.
Renal cell carcinoma: standards and controversies
.
World J Urol
.
2018
Dec
;
36
(
12
):
1889
90
.
[PubMed]
0724-4983
8.
George
S
,
Rini
BI
,
Hammers
HJ
.
Emerging Role of Combination Immunotherapy in the First-line Treatment of Advanced Renal Cell Carcinoma: A Review
.
JAMA Oncol
.
2019
Mar
;
5
(
3
):
411
21
.
[PubMed]
2374-2437
9.
Hollingsworth
JM
,
Miller
DC
,
Daignault
S
,
Hollenbeck
BK
.
Five-year survival after surgical treatment for kidney cancer: a population-based competing risk analysis
.
Cancer
.
2007
May
;
109
(
9
):
1763
8
.
[PubMed]
0008-543X
10.
Nguyen
MM
,
Gill
IS
,
Ellison
LM
.
The evolving presentation of renal carcinoma in the United States: trends from the Surveillance, Epidemiology, and End Results program
.
J Urol
.
2006
Dec
;
176
(
6 Pt 1
):
2397
400
.
[PubMed]
0022-5347
11.
Jonasch
E
,
Gao
J
,
Rathmell
WK
.
Renal cell carcinoma
.
BMJ
.
2014
Nov
;
349
nov10 11
:
g4797
.
[PubMed]
0959-8138
12.
Pinho
SS
,
Osório
H
,
Nita-Lazar
M
,
Gomes
J
,
Lopes
C
,
Gärtner
F
, et al.
.
Role of E-cadherin N-glycosylation profile in a mammary tumor model
.
Biochem Biophys Res Commun
.
2009
Feb
;
379
(
4
):
1091
6
.
[PubMed]
0006-291X
13.
Santos
IC
,
Silbiger
VN
,
Higuchi
DA
,
Gomes
MA
,
Barcelos
LS
,
Teixeira
MM
, et al.
.
Angiostatic activity of human plasminogen fragments is highly dependent on glycosylation
.
Cancer Sci
.
2010
Feb
;
101
(
2
):
453
9
.
[PubMed]
1347-9032
14.
Kariya
Y
,
Kawamura
C
,
Tabei
T
,
Gu
J
.
Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility
.
J Biol Chem
.
2010
Jan
;
285
(
5
):
3330
40
.
[PubMed]
0021-9258
15.
Zhu
S
,
Li
Y
,
Xiao
W
,
Yang
Y
.
High expression of GMⅡ is associated with poor prognosis of gastric cancer patients
.
OncoTargets Ther
.
2019
Jun
;
12
:
4379
89
.
[PubMed]
1178-6930
16.
Häuselmann
I
,
Borsig
L
.
Altered tumor-cell glycosylation promotes metastasis
.
Front Oncol
.
2014
Feb
;
4
:
28
.
[PubMed]
2234-943X
17.
Kitagawa
T
,
Tsuruhara
Y
,
Hayashi
M
,
Endo
T
,
Stanbridge
EJ
.
A tumor-associated glycosylation change in the glucose transporter GLUT1 controlled by tumor suppressor function in human cell hybrids
.
J Cell Sci
.
1995
Dec
;
108
(
Pt 12
):
3735
43
.
[PubMed]
0021-9533
18.
Ferreira
IG
,
Pucci
M
,
Venturi
G
,
Malagolini
N
,
Chiricolo
M
,
Dall’Olio
F
.
Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling
.
Int J Mol Sci
.
2018
Feb
;
19
(
2
):
E580
.
[PubMed]
1661-6596
19.
Pinho
SS
,
Reis
CA
.
Glycosylation in cancer: mechanisms and clinical implications
.
Nat Rev Cancer
.
2015
Sep
;
15
(
9
):
540
55
.
[PubMed]
1474-175X
20.
Rose
DR
.
Structure, mechanism and inhibition of Golgi α-mannosidase II
.
Curr Opin Struct Biol
.
2012
Oct
;
22
(
5
):
558
62
.
[PubMed]
0959-440X
21.
Petersen
L
,
Ardèvol
A
,
Rovira
C
,
Reilly
PJ
.
Molecular mechanism of the glycosylation step catalyzed by Golgi alpha-mannosidase II: a QM/MM metadynamics investigation
.
J Am Chem Soc
.
2010
Jun
;
132
(
24
):
8291
300
.
[PubMed]
0002-7863
22.
Fiaux
H
,
Kuntz
DA
,
Hoffman
D
,
Janzer
RC
,
Gerber-Lemaire
S
,
Rose
DR
, et al.
.
Functionalized pyrrolidine inhibitors of human type II alpha-mannosidases as anti-cancer agents: optimizing the fit to the active site
.
Bioorg Med Chem
.
2008
Aug
;
16
(
15
):
7337
46
.
[PubMed]
0968-0896
23.
Goss
PE
,
Baptiste
J
,
Fernandes
B
,
Baker
M
,
Dennis
JW
.
A phase I study of swainsonine in patients with advanced malignancies
.
Cancer Res
.
1994
Mar
;
54
(
6
):
1450
7
.
[PubMed]
0008-5472
24.
Šesták
S
,
Bella
M
,
Klunda
T
,
Gurská
S
,
Džubák
P
,
Wöls
F
, et al.
.
N-Benzyl Substitution of Polyhydroxypyrrolidines: The Way to Selective Inhibitors of Golgi α-Mannosidase II
.
ChemMedChem
.
2018
Feb
;
13
(
4
):
373
83
.
[PubMed]
1860-7179
25.
Przybyło
M
,
Lityńska
A
,
Pocheć
E
.
Different adhesion and migration properties of human HCV29 non-malignant urothelial and T24 bladder cancer cells: role of glycosylation
.
Biochimie
.
2005
Feb
;
87
(
2
):
133
42
.
[PubMed]
0300-9084
26.
Kattan
MW
,
Hess
KR
,
Amin
MB
,
Lu
Y
,
Moons
KG
,
Gershenwald
JE
, et al.;
members of the AJCC Precision Medicine Core
.
American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine
.
CA Cancer J Clin
.
2016
Sep
;
66
(
5
):
370
4
.
[PubMed]
0007-9235
27.
Livak
KJ
,
Schmittgen
TD
.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
.
Methods
.
2001
Dec
;
25
(
4
):
402
8
.
[PubMed]
1046-2023
28.
Pan
T
,
Zhou
D
,
Shi
Z
,
Qiu
Y
,
Zhou
G
,
Liu
J
, et al.
.
Centromere Protein U (CENPU) enhances angiogenesis in triple-negative breast cancer by inhibiting ubiquitin-proteasomal degradation of COX-2
.
Cancer Lett
.
2019
Nov
;
S0304-3835(19)30558-0
.
[PubMed]
0304-3835
29.
Rabouille
C
,
Jokitalo
E
.
Golgi apparatus partitioning during cell division
.
Mol Membr Biol
.
2003
Apr-Jun
;
20
(
2
):
117
27
.
[PubMed]
0968-7688
30.
Kodani
A
,
Sütterlin
C
.
A new function for an old organelle: microtubule nucleation at the Golgi apparatus
.
EMBO J
.
2009
Apr
;
28
(
8
):
995
6
.
[PubMed]
0261-4189
31.
Landolt
L
,
Eikrem
Ø
,
Strauss
P
,
Scherer
A
,
Lovett
DH
,
Beisland
C
, et al.
.
Clear Cell Renal Cell Carcinoma is linked to Epithelial-to-Mesenchymal Transition and to Fibrosis
.
Physiol Rep
.
2017
Jun
;
5
(
11
):
e13305
.
[PubMed]
2051-817X
32.
Preisinger
C
,
Short
B
,
De Corte
V
,
Bruyneel
E
,
Haas
A
,
Kopajtich
R
, et al.
.
YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta
.
J Cell Biol
.
2004
Mar
;
164
(
7
):
1009
20
.
[PubMed]
0021-9525
33.
Velasco
A
,
Hendricks
L
,
Moremen
KW
,
Tulsiani
DR
,
Touster
O
,
Farquhar
MG
.
Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II
.
J Cell Biol
.
1993
Jul
;
122
(
1
):
39
51
.
[PubMed]
0021-9525
34.
Shah
N
,
Kuntz
DA
,
Rose
DR
.
Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site
.
Proc Natl Acad Sci USA
.
2008
Jul
;
105
(
28
):
9570
5
.
[PubMed]
0027-8424
35.
Suits
MD
,
Zhu
Y
,
Taylor
EJ
,
Walton
J
,
Zechel
DL
,
Gilbert
HJ
, et al.
.
Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase
.
PLoS One
.
2010
Feb
;
5
(
2
):
e9006
.
[PubMed]
1932-6203
36.
Li
M
,
Song
L
,
Qin
X
.
Glycan changes: cancer metastasis and anti-cancer vaccines
.
J Biosci
.
2010
Dec
;
35
(
4
):
665
73
.
[PubMed]
0250-5991
37.
Varki
,
A.
,
R.
Kannagi
and
B.P.
Toole
,
Glycosylation Changes in Cancer.
2009
.
38.
Vajaria
BN
,
Patel
PS
.
Glycosylation: a hallmark of cancer
.
Glycoconj J
.
2017
Apr
;
34
(
2
):
147
56
.
[PubMed]
0282-0080
39.
Fuster
MM
,
Esko
JD
.
The sweet and sour of cancer: glycans as novel therapeutic targets
.
Nat Rev Cancer
.
2005
Jul
;
5
(
7
):
526
42
.
[PubMed]
1474-175X
40.
Rodrigues
JG
,
Balmaña
M
,
Macedo
JA
,
Poças
J
,
Fernandes
Â
,
de-Freitas-Junior
JC
, et al.
.
Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis
.
Cell Immunol
.
2018
Nov
;
333
:
46
57
.
[PubMed]
0008-8749
41.
Adams
OJ
,
Stanczak
MA
,
von Gunten
S
,
Läubli
H
.
Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer
.
Glycobiology
.
2018
Sep
;
28
(
9
):
640
7
.
[PubMed]
1460-2423
42.
van den Elsen
JM
,
Kuntz
DA
,
Rose
DR
.
Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells
.
EMBO J
.
2001
Jun
;
20
(
12
):
3008
17
.
[PubMed]
0261-4189
43.
Laidler
P
,
Lityńska
A
.
Tumor cell N-glycans in metastasis
.
Acta Biochim Pol
.
1997
;
44
(
2
):
343
57
.
[PubMed]
0001-527X
44.
Zhang
Y
,
Zhao
JH
,
Zhang
XY
,
Guo
HB
,
Liu
F
,
Chen
HL
.
Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions
.
Mol Cell Biochem
.
2004
May
;
260
(
1-2
):
137
46
.
[PubMed]
0300-8177
45.
Sun
JY
,
Zhu
MZ
,
Wang
SW
,
Miao
S
,
Xie
YH
,
Wang
JB
.
Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine
.
Phytomedicine
.
2007
May
;
14
(
5
):
353
9
.
[PubMed]
0944-7113
You do not currently have access to this content.