Hepatocellular carcinoma (HCC) is one of the most deadly and rapidly evolving cancers worldwide. The current systemic treatment strategies in advanced tumor stages remain limited despite promising preclinical and early-phase clinical results for some compounds, highlighting an unmet clinical need. Since the majority of HCCs evolve in the background of a chronic inflammatory liver damage, HCCs can be considered a paradigm for inflammation-induced cancers, which renders immunotherapeutic strategies particularly promising for this tumor entity. Consequently, an improved understanding of key oncogenic and immune response signaling pathways as well as increasing appreciation of the diseased microenvironment for HCC initiation and progression has led to the development of a diverse range of immune-oncological interventions during the last decade. Besides oncolytic viruses, vaccines, or immune cell infusions, first results from early-phase clinical trials particularly encourage the use of immune checkpoint inhibitors against PD-1/PD-L1 and CTLA-4 for HCC. In this review, we delineate the current clinical and preclinical landscape of immunotherapies in HCC, critically discuss recent findings from clinical trials and outline future perspectives in the field of liver cancer.

1.
Torre LA et al.: Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
2.
Jemal A et al.: Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst 2017;109(9).
3.
Bruix J, Sherman MD; American Association for the Study of Liver: Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-1022.
4.
Karin M: Nuclear factor-kappaB in cancer development and progression. Nature 2006;441:431-436.
5.
Worns MA, Galle PR: HCC therapies - lessons learned. Nat Rev Gastroenterol Hepatol 2014;11:447-452.
6.
Nault JC, Galle PR, Marquardt JU: The role of molecular enrichment on future therapies in hepatocellular carcinoma. J Hepatol 2018, in press. DOI: 10.1016/j.jhep.2018.02.016
7.
Hernandez-Gea V et al.: Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013;144:512-527.
8.
Larkin J et al.: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:1270-1271.
9.
Greten TF, Wang XW, Korangy F: Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut 2015;64:842-848.
10.
Calderaro J et al.: Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology 2016;64:2038-2046.
11.
Robinson M, Harmon C, O'Farrelly C: Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016;13:267-276.
12.
Crispe IN: Liver antigen-presenting cells. J Hepatol 2011;54:357-365.
13.
Buttner N, Schmidt N, Thimme R: Perspectives of immunotherapy in hepatocellular carcinoma (HCC). Z Gastroenterol 2016;54:1334-1342.
14.
Wada Y et al.: Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998;27:407-414.
15.
Brunner SM et al.: Tumor-infiltrating, interleukin-33-producing effector-memory CD8(+) T cells in resected hepatocellular carcinoma prolong patient survival. Hepatology 2015;61:1957-1967.
16.
Flecken T et al.: Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014;59:1415-1426.
17.
Eggert T et al.: Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 2016;30:533-547.
18.
Eggert T, Greten TF: Tumor regulation of the tissue environment in the liver. Pharmacol Ther 2017;173:47-57.
19.
Ormandy LA et al.: Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 2006;12:3275-3282.
20.
Algarra I, Cabrera T, Garrido F: The HLA crossroad in tumor immunology. Hum Immunol 2000;61:65-73.
21.
Nagao M et al.: The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology 2000;32:491-500.
22.
Nagao M et al.: The alteration of Fas receptor and ligand system in hepatocellular carcinomas: how do hepatoma cells escape from the host immune surveillance in vivo? Hepatology 1999;30:413-421.
23.
Schmidt N, Thimme R: Role of immunity in pathogenesis and treatment of hepatocellular carcinoma. Dig Dis 2016;34:429-437.
24.
Tahmasebi Birgani M, Carloni V: Tumor microenvironment, a paradigm in hepatocellular carcinoma progression and therapy. Int J Mol Sci 2017;18:E405.
25.
Leonardi GC et al.: The tumor microenvironment in hepatocellular carcinoma (review). Int J Oncol 2012;40:1733-1747.
26.
Ma C et al.: NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016;531:253-257.
27.
Liu C et al.: Value of alpha-fetoprotein in association with clinicopathological features of hepatocellular carcinoma. World J Gastroenterol 2013;19:1811-1819.
28.
Butterfield LH et al.: T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein. J Immunol 2001;166:5300-5308.
29.
Nakagawa H et al.: Association between high-avidity T-cell receptors, induced by α-fetoprotein-derived peptides, and anti-tumor effects in patients with hepatocellular carcinoma. Gastroenterology 2017;152:1395-1406.e10.
30.
Kershaw MH, Westwood JA, Darcy PK: Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013;13:525-541.
31.
Kershaw MH et al.: Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunology 2014;3:e16.
32.
Chmielewski M, Hombach AA, Abken H: Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol 2013;4:371.
33.
Gao H et al.: Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 2014;20:6418-6428.
34.
Zhang Q et al.: CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. Oncoimmunology 2016;5:e1251539.
35.
Friedman D et al.: Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma. Hepatol Res 2016;47:702-714.
36.
Woller N et al.: Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 2015;23:1630-1640.
37.
Greten TF, Sangro B: Targets for immunotherapy of liver cancer. J Hepatol 2017, in press. DOI: 10.1016/j.jhep.2017.09.007
38.
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-264.
39.
Topalian SL et al.: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16:275-287.
40.
Postow MA et al.: Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015;372:2006-2017.
41.
Baradaran Noveiry B et al.: Specific immunotherapy in hepatocellular cancer: a systematic review. J Gastroenterol Hepatol 2017;32:339-351.
42.
Moehler M et al.: Immunotherapy in gastrointestinal cancer: recent results, current studies and future perspectives. Eur J Cancer 2016;59:160-170.
43.
El-Khoueiry AB et al.: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502.
44.
Borghaei H et al.: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373:1627-1639.
45.
Weber JS et al.: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16:375-384.
46.
Brown ZJ et al.: Safety in treatment of hepatocellular carcinoma with immune checkpoint inhibitors as compared to melanoma and non-small cell lung cancer. J Immunother Cancer 2017;5:93.
47.
Sangro B et al.: A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013;59:81-88.
48.
Kudo M: Immuno-oncology in hepatocellular carcinoma: 2017 update. Oncology 2017;93(suppl 1):147-159.
49.
Kelley RK et al.: Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): phase I safety and efficacy analyses. J Clin Oncol 2017;35(15 suppl):4073-4073.
50.
Shaverdian N et al.: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol 2017;18:895-903.
51.
Mizukoshi E et al.: Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013;57:1448-1457.
52.
Duffy AG et al.: Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017;66:545-551.
53.
Snyder A et al.: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189-2199.
54.
Wang L et al.: hMLH1 and hMSH2 expression in human hepatocellular carcinoma. Int J Oncol 2001;19:567-570.
55.
Palmer AC, Sorger PK: Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 2017;171:1678-1691.e13.
You do not currently have access to this content.