Pancreatic ductal adenocarcinoma (PDAC, pancreatic cancer) carries one of the poorest overall prognoses of all human malignancies known to date. Despite the introduction of novel therapeutic regimens, the outcome has not markedly improved over the past decades, the incidence rates are almost identical to the mortality rates, and PDAC is projected to soon become the second most common cause of cancer-related mortality in Western countries. Despite this clear medical need to develop novel therapeutic strategies against this dire malady, this need has so far not been addressed with sufficient institutional attention and support in terms of research funding and strategical programs. Given the still growing life expectancy and projected demographic changes with a growing proportion of senior citizens in many European societies, this discrepancy is likely to become even more pressing in the future. This article provides a brief overview of ongoing preclinical efforts to identify novel targets and, based on this, to develop novel strategies to treat advanced pancreatic cancer and improve survival and the quality of life of patients suffering from this malignancy.

1.
Hidalgo M, Cascinu S, Kleeff J, et al.: Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology 2015;15:8-18.
[PubMed]
2.
Siegel RL, Miller KD, Jemal A: Cancer statistics, 2017. CA Cancer J Clin 2017;67:7-30.
[PubMed]
3.
Von Hoff DD, Ervin T, Arena FP, et al.: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:1691-1703.
[PubMed]
4.
Conroy T, Desseigne F, Ychou M, et al.: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011;364:1817-1825.
[PubMed]
5.
Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
[PubMed]
6.
Cancer Genome Atlas Research Network, Electronic address: [email protected], Cancer Genome Atlas Research Network: Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017;32:185-203.e113.
[PubMed]
7.
Jones S, Zhang X, Parsons DW, et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-1806.
[PubMed]
8.
Kamiyama H, Rauenzahn S, Shim JS, et al.: Personalized chemotherapy profiling using cancer cell lines from selectable mice. Clin Cancer Res 2013;19:1139-1146.
[PubMed]
9.
Jimeno A, Feldmann G, Suarez-Gauthier A, et al.: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009;8:310-314.
[PubMed]
10.
Feldmann G, Dhara S, Fendrich V, et al.: Blockade of Hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007;67:2187-2196.
[PubMed]
11.
Feldmann G, Rauenzahn S, Maitra A: In vitro models of pancreatic cancer for translational oncology research. Expert Opin Drug Discov 2009;4:429-443.
[PubMed]
12.
Schutte U, Bisht S, Brossart P, Feldmann G: Recent developments of transgenic and xenograft mouse models of pancreatic cancer for translational research. Expert Opin Drug Discov 2011;6:33-48.
[PubMed]
13.
Hingorani SR, Petricoin EF, Maitra A, et al.: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437-450.
[PubMed]
14.
Hingorani SR, Wang L, Multani AS, et al.: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005;7:469-483.
[PubMed]
15.
Aguirre AJ, Bardeesy N, Sinha M, et al.: Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003;17:3112-3126.
[PubMed]
16.
Habbe N, Shi G, Meguid RA, et al.: Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A 2008;105:18913-18918.
[PubMed]
17.
Saur D, Seidler B, Schneider G, et al.: CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 2005;129:1237-1250.
[PubMed]
18.
Siveke JT, Einwachter H, Sipos B, et al.: Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 2007;12:266-279.
[PubMed]
19.
Rad R, Rad L, Wang W, et al.: A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat Genet 2015;47:47-56.
[PubMed]
20.
Maresch R, Mueller S, Veltkamp C, et al.: Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 2016;7:10770.
[PubMed]
21.
Aberle MR, Burkhart RA, Tiriac H, et al.: Patient-derived organoid models help define personalized management of gastrointestinal cancer. Br J Surg 2018;105:e48-e60.
[PubMed]
22.
Wood LD, Parsons DW, Jones S, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007;318:1108-1113.
[PubMed]
23.
Vogelstein B, Papadopoulos N, Velculescu VE, et al.: Cancer genome landscapes. Science 2013;339:1546-1558.
[PubMed]
24.
Feldmann G, Maitra A: Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts. J Mol Diagn 2008;10:111-122.
[PubMed]
25.
Feldmann G, Beaty R, Hruban RH, Maitra A: Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 2007;14:224-232.
[PubMed]
26.
Nussinov R, Muratcioglu S, Tsai CJ, et al.: The key role of calmodulin in KRAS-driven adenocarcinomas. Mol Cancer Res 2015;13:1265-1273.
[PubMed]
27.
Viale A, Pettazzoni P, Lyssiotis CA, et al.: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014;514:628-632.
[PubMed]
28.
Hanrahan AJ, Solit DB: RAF/MEK dependence of KRAS-mutant pancreatic ductal adenocarcinomas. Cancer Discov 2012;2:666-669.
[PubMed]
29.
Muzumdar MD, Chen PY, Dorans KJ, et al.: Survival of pancreatic cancer cells lacking KRAS function. Nat Commun 2017;8:1090.
[PubMed]
30.
Tan L, Cho KJ, Neupane P, et al.: An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth. J Biol Chem 2018;293:13696-13706.
[PubMed]
31.
McCarthy AM, Kim J, Museth AK, et al.: Allosteric inhibitor of KRas identified using a barcoded assay microchip platform. Anal Chem 2018;90:8824-8830.
[PubMed]
32.
Furuse J, Kurata T, Okano N, et al.: An early clinical trial of salirasib, an oral RAS inhibitor, in Japanese patients with relapsed/refractory solid tumors. Cancer Chemother Pharmacol 2018, in press. DOI: 10.1007/s00280-018-3618-4
[PubMed]
33.
Stites EC, Shaw AS: Quantitative systems pharmacology analysis of KRAS G12C covalent inhibitors. CPT Pharmacometrics Syst Pharmacol 2018;7:342-351.
[PubMed]
34.
Xie C, Li Y, Li LL, et al.: Identification of a new potent inhibitor targeting KRAS in non-small cell lung cancer cells. Front Pharmacol 2017;8:823.
[PubMed]
35.
Zhang Y, Larraufie MH, Musavi L, et al.: Design of small molecules that compete with nucleotide binding to an engineered oncogenic KRAS allele. Biochemistry 2018;57:1380-1389.
[PubMed]
36.
Janes MR, Zhang J, Li LS, et al.: Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 2018;172:578-589.e517.
[PubMed]
37.
Feldmann G, Mishra A, Hong SM, et al.: Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res 2010;70:4460-4469.
[PubMed]
38.
Ostrem JM, Shokat KM: Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov 2016;15:771-785.
[PubMed]
39.
Nussinov R, Tsai CJ, Jang H: Is nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant? Semin Cancer Biol 2018, in press. DOI: 10.1016/j.semcancer.2018.01.002
[PubMed]
40.
Kidger AM, Sipthorp J, Cook SJ: ERK1/2 inhibitors: new weapons to inhibit the Ras-regulated Raf-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018;187:45-60.
[PubMed]
41.
Navas C, Hernandez-Porras I, Schuhmacher AJ, et al.: EGF receptor signaling is essential for K-Ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 2012;22:318-330.
[PubMed]
42.
Ardito CM, Gruner BM, Takeuchi KK, et al.: EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 2012;22:304-317.
[PubMed]
43.
Moore MJ, Goldstein D, Hamm J, et al.: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1960-1966.
[PubMed]
44.
Eser S, Reiff N, Messer M, et al.: Selective requirement of PI3K/PDK1 signaling for KRAS oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 2013;23:406-420.
[PubMed]
45.
Rodon J, Dienstmann R, Serra V, Tabernero J: Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013;10:143-153.
[PubMed]
46.
Kim RD, Alberts SR, Pena C, et al.: Phase I dose-escalation study of copanlisib in combination with gemcitabine or cisplatin plus gemcitabine in patients with advanced cancer. Br J Cancer 2018;118:462-470.
[PubMed]
47.
Kim C, Giaccone G: MEK inhibitors under development for treatment of non-small-cell lung cancer. Expert Opin Investig Drugs 2018;27:17-30.
[PubMed]
48.
Krishnamurthy A, Dasari A, Noonan AM, et al.: Phase Ib results of the rational combination of selumetinib and cyclosporin A in advanced solid tumors with an expansion cohort in metastatic colorectal cancer. Cancer Res 2018, in press. DOI: 10.1158/0008-5472.CAN-18-0316
[PubMed]
49.
Stephen AG, Esposito D, Bagni RK, McCormick F: Dragging Ras back in the ring. Cancer Cell 2014;25:272-281.
[PubMed]
50.
Neel NF, Martin TD, Stratford JK, et al.: The RalGEF-Ral effector signaling network: the road less traveled for anti-Ras drug discovery. Genes Cancer 2011;2:275-287.
[PubMed]
51.
Feldmann G, Mishra A, Bisht S, et al.: Cyclin-dependent kinase inhibitor dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol Ther 2011;12:598-609.
[PubMed]
52.
Alagesan B, Contino G, Guimaraes AR, et al.: Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer. Clin Cancer Res 2015;21:396-404.
[PubMed]
53.
Riquelme E, Behrens C, Lin HY, et al.: Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations. Cancer Res 2016;76:675-685.
[PubMed]
54.
Knudsen ES, O'Reilly EM, Brody JR, Witkiewicz AK: Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine. Gastroenterology 2016;150:48-63.
[PubMed]
55.
Liu FT, Rabinovich GA: Galectins as modulators of tumour progression. Nat Rev Cancer 2005;5:29-41.
[PubMed]
56.
Iurisci I, Tinari N, Natoli C, et al.: Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 2000;6:1389-1393.
[PubMed]
57.
Seguin L, Camargo MF, Wettersten HI, et al.: Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov 2017;7:1464-1479.
[PubMed]
58.
Ryan DP, Hong TS, Bardeesy N: Pancreatic adenocarcinoma. N Engl J Med 2014;371:1039-1049.
[PubMed]
59.
Iacobuzio-Donahue CA, Fu B, Yachida S, et al.: DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 2009;27:1806-1813.
[PubMed]
60.
Crane CH, Varadhachary GR, Yordy JS, et al.: Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: Correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol 2011;29:3037-3043.
[PubMed]
61.
Cui Y, Brosnan JA, Blackford AL, et al.: Genetically defined subsets of human pancreatic cancer show unique in vitro chemosensitivity. Clin Cancer Res 2012;18:6519-6530.
[PubMed]
62.
Qian ZR, Rubinson DA, Nowak JA, et al.: Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol 2018;4:e173420.
[PubMed]
63.
Masetti M, Acquaviva G, Visani M, et al.: Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4. Cancer Biomark 2018;21:323-334.
[PubMed]
64.
Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, et al.: Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev 2018;(2): CD011123.
[PubMed]
65.
Kopetz S, McDonough SL, Lenz H-J, et al.: Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG S1406). J Clin Oncol 2017;35:3505-3505.
66.
Berman DM, Karhadkar SS, Maitra A, et al.: Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846-851.
[PubMed]
67.
Fendrich V, Oh E, Bang S, et al.: Ectopic overexpression of Sonic Hedgehog (shh) induces stromal expansion and metaplasia in the adult murine pancreas. Neoplasia 2011;13:923-930.
[PubMed]
68.
Bisht S, Brossart P, Maitra A, Feldmann G: Agents targeting the Hedgehog pathway for pancreatic cancer treatment. Curr Opin Investig Drugs 2010;11:1387-1398.
[PubMed]
69.
Feldmann G, Fendrich V, McGovern K, et al.: An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 2008;7:2725-2735.
[PubMed]
70.
Feldmann G, Habbe N, Dhara S, et al.: Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008;57:1420-1430.
[PubMed]
71.
Olive KP, Jacobetz MA, Davidson CJ, et al.: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009;324:1457-1461.
[PubMed]
72.
Rucki AA, Xiao Q, Muth S, et al.: Dual inhibition of Hedgehog and c-Met pathways for pancreatic cancer treatment. Mol Cancer Ther 2017;16:2399-2409.
[PubMed]
73.
Mullendore ME, Koorstra JB, Li YM, et al.: Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res 2009;15:2291-2301.
[PubMed]
74.
Miyamoto Y, Maitra A, Ghosh B, et al.: Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003;3:565-576.
[PubMed]
75.
Yabuuchi S, Pai SG, Campbell NR, et al.: Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett 2013;335:41-51.
[PubMed]
76.
Cheung PF, Neff F, Neander C, et al.: Notch-induced myeloid reprogramming in spontaneous pancreatic ductal adenocarcinoma by dual genetic targeting. Cancer Res 2018;78:4997-5010.
[PubMed]
77.
Cook N, Basu B, Smith DM, et al.: A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer 2018;118:793-801.
[PubMed]
78.
Capodanno Y, Buishand FO, Pang LY, et al.: Notch pathway inhibition targets chemoresistant insulinoma cancer stem cells. Endocr Relat Cancer 2018;25:131-144.
[PubMed]
79.
Andrikou K, Peterle C, Pipitone S, et al.: Emerging antibodies for the treatment of pancreatic cancer. Expert Opin Emerg Drugs 2017;22:39-51.
[PubMed]
80.
Sivakumar S, de Santiago I, Chlon L, Markowetz F: Master regulators of oncogenic KRAS response in pancreatic cancer: an integrative network biology analysis. PLoS Med 2017;14:e1002223.
[PubMed]
81.
Saunders LR, Bankovich AJ, Anderson WC, et al.: A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med 2015;7:302ra136.
[PubMed]
82.
Rudin CM, Pietanza MC, Bauer TM, et al.: Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 2017;18:42-51.
[PubMed]
83.
Waddell N, Pajic M, Patch AM, et al.: Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015;518:495-501.
[PubMed]
84.
Lohse I, Kumareswaran R, Cao P, et al.: Effects of combined treatment with ionizing radiation and the PARP inhibitor olaparib in BRCA mutant and wild type patient-derived pancreatic cancer xenografts. PLoS One 2016;11:e0167272.
[PubMed]
85.
Yarchoan M, Myzak MC, Johnson BA, 3rd, et al.: Olaparib in combination with irinotecan, cisplatin, and mitomycin C in patients with advanced pancreatic cancer. Oncotarget 2017;8:44073-44081.
[PubMed]
86.
Kaufman B, Shapira-Frommer R, Schmutzler RK, et al.: Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244-250.
[PubMed]
87.
Kowalewski A, Szylberg L, Saganek M, et al.: Emerging strategies in BRCA-positive pancreatic cancer. J Cancer Res Clin Oncol 2018;144:1503-1507.
[PubMed]
88.
Cloyd JM, Katz MHG, Wang H, et al.: Clinical and genetic implications of DNA mismatch repair deficiency in patients with pancreatic ductal adenocarcinoma. JAMA Surg 2017;152:1086-1088.
[PubMed]
89.
Connor AA, Denroche RE, Jang GH, et al.: Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol 2017;3:774-783.
[PubMed]
90.
Rolfo C, Mack PC, Scagliotti GV, et al.: Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol 2018;13:1248-1268.
[PubMed]
91.
Lim SM, Syn NL, Cho BC, Soo RA: Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic strategies. Cancer Treat Rev 2018;65:1-10.
[PubMed]
92.
Sausen M, Phallen J, Adleff V, et al.: Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 2015;6:7686.
[PubMed]
93.
Allenson K, Castillo J, San Lucas FA, et al.: High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol 2017;28:741-747.
[PubMed]
94.
Cohen JD, Javed AA, Thoburn C, et al.: Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A 2017;114:10202-10207.
[PubMed]
95.
Jaffee EM, Abrams R, Cameron J, et al.: A phase I clinical trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum Gene Ther 1998;9:1951-1971.
[PubMed]
96.
Jaffee EM: Immunotherapy of cancer. Ann N Y Acad Sci 1999;886:67-72.
[PubMed]
97.
Lutz E, Yeo CJ, Lillemoe KD, et al.: A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Ann Surg 2011;253:328-335.
[PubMed]
98.
Le DT, Brockstedt DG, Nir-Paz R, et al: A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 2012;18:858-868.
[PubMed]
99.
Le DT, Wang-Gillam A, Picozzi V, et al.: Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015;33:1325-1333.
[PubMed]
100.
Le DT, Durham JN, Smith KN, et al.: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409-413.
[PubMed]
101.
Le DT, Uram JN, Wang H, et al.: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520.
[PubMed]
102.
Overman MJ, Lonardi S, Wong KYM, et al.: Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018;36:773-779.
[PubMed]
103.
Overman MJ, Bergamo F, McDermott RS, et al.: Nivolumab in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): long-term survival according to prior line of treatment from CheckMate-142. J Clin Oncol 2018;36(suppl 4S):abstr 554.
104.
Knudsen ES, Vail P, Balaji U, et al.: Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunologic markers. Clin Cancer Res 2017;23:4429-4440.
[PubMed]
105.
Germano G, Lamba S, Rospo G, et al.: Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 2017;552:116-120.
[PubMed]
106.
Vincent J, Mignot G, Chalmin F, et al.: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010;70:3052-3061.
[PubMed]
107.
Michaud M, Martins I, Sukkurwala AQ, et al.: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011;334:1573-1577.
[PubMed]
108.
Tesniere A, Schlemmer F, Boige V, et al.: Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010;29:482-491.
[PubMed]
109.
Duffy AG, Greten TF: Immunological off-target effects of standard treatments in gastrointestinal cancers. Ann Oncol 2014;25:24-32.
[PubMed]
110.
Ebert PJR, Cheung J, Yang Y, et al.: MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 2016;44:609-621.
[PubMed]
111.
Bendell JC, Kopetz S, Middleton MR, et al.: Phase 1b/2 study of binimetinib (bini) in combination with nivolumab (nivo) or nivo plus ipilimumab (ipi) in patients (pts) with previously treated microsatellite-stable (MSS) metastatic colorectal cancer (mCRC) with Ras mutation. J Clin Oncol 2018;36(suppl 4S):abstr TPS870.
112.
Soares KC, Rucki AA, Wu AA, et al.: PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 2015;38:1-11.
[PubMed]
You do not currently have access to this content.