The brain has long been considered an immune-privileged site precluding potent immune responses. Nevertheless, because of the failure of conventional anti-cancer treatments to achieve sustained control of intracranial neoplasms, immunotherapy has been considered as a promising strategy for decades. However, several efforts aimed at exploiting the immune system as a therapeutic weapon were largely unsuccessful. The situation only changed with the introduction of the checkpoint inhibitors, which target immune cell receptors that interfere with the activation of immune effector cells. Following the observation of striking effects of drugs that target CTLA-4 or PD-1 against melanoma and other tumor entities, it was recognized that these drugs may also be active against metastatic tumor lesions in the brain. Their therapeutic activity against primary brain tumors is currently being investigated within clinical trials. In parallel, other immunotherapeutics such as peptide vaccines are at an advanced stage of clinical development. Further immunotherapeutic strategies currently under investigation comprise adoptive immune cell transfer as well as inhibitors of metabolic pathways involved in the local immunosuppression frequently found in brain tumors. Thus, the ongoing implementation of immunotherapeutic concepts into clinical routine may represent a powerful addition to the therapeutic arsenal against various brain tumors.

1.
Ransohoff RM, Engelhardt B: The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12:623-635.
[PubMed]
2.
D'Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K: Brain dendritic cells: Biology and pathology. Acta Neuropathol 2012;124:599-614.
[PubMed]
3.
Roth P, Regli L, Tonder M, Weller M: Tumor-associated edema in brain cancer patients: Pathogenesis and management. Expert Rev Anticancer Ther 2013;13:1319-1325.
[PubMed]
4.
Ciccarelli O, Barkhof F, Bodini B, et al.: Pathogenesis of multiple sclerosis: Insights from molecular and metabolic imaging. Lancet Neurol 2014;13:807-822.
[PubMed]
5.
Louveau A, Smirnov I, Keyes TJ, et al.: Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337-341.
[PubMed]
6.
Schlager C, Korner H, Krueger M, et al.: Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 2016;530:349-353.
[PubMed]
7.
Berghoff AS, Fuchs E, Ricken G, et al.: Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 2016;5:e1057388.
[PubMed]
8.
Guirguis LM, Yang JC, White DE, et al.: Safety and efficacy of high-dose interleukin-2 therapy in patients with brain metastases. J Immunother 2002;25:82-87.
[PubMed]
9.
Chu MB, Fesler MJ, Armbrecht ES, et al.: High-dose interleukin-2 (HD IL-2) therapy should be considered for treatment of patients with melanoma brain metastases. Chemother Res Pract 2013;2013:726925.
[PubMed]
10.
Roth P, Eisele G, Weller M: Immunology of brain tumors. Handb Clin Neurol 2012;104:45-51.
[PubMed]
11.
Frei K, Gramatzki D, Tritschler I, et al.: Transforming growth factor-beta pathway activity in glioblastoma. Oncotarget 2015;6:5963-5977.
[PubMed]
12.
Roth P, Junker M, Tritschler I, et al.: GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res 2010;16:3851-3859.
[PubMed]
13.
Codo P, Weller M, Meister G, et al.: MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget 2014;5:7651-7662.
[PubMed]
14.
Roth P, Mittelbronn M, Wick W, et al.: Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res 2007;67:3540-3544.
[PubMed]
15.
Hishii M, Nitta T, Ishida H, et al.: Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995;37:1160-1166;discussion 1166-1167.
[PubMed]
16.
Lauro GM, Di Lorenzo N, Grossi M, et al.: Prostaglandin E2 as an immunomodulating factor released in vitro by human glioma cells. Acta Neuropathol 1986;69:278-282.
[PubMed]
17.
Grauer OM, Nierkens S, Bennink E, et al.: CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007;121:95-105.
[PubMed]
18.
Rodon J, Carducci MA, Sepulveda-Sanchez JM, et al.: First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 2015;21:553-560.
[PubMed]
19.
Brandes AA, Carpentier AF, Kesari S, et al.: A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol 2016;[Epub ahead of print].
[PubMed]
20.
Platten M, Wick W, Van den Eynde BJ: Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res 2012;72:5435-5440.
[PubMed]
21.
Wainwright DA, Balyasnikova IV, Chang AL, et al.: IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 2012;18:6110-6121.
[PubMed]
22.
Zhai L, Lauing KL, Chang AL, et al.: The role of IDO in brain tumor immunotherapy. J Neurooncol 2015;123:395-403.
[PubMed]
23.
Zakharia Y, Johnson TS, Colman H, Vahanian NN: A phase I/II study of the combination of indoximod and temozolomide for adult patients with temozolomide-refractory primary malignant brain tumors. J Clin Oncol 2014;32:5s.
24.
Buchbinder E, Hodi FS: Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest 2015;125:3377-3383.
[PubMed]
25.
Preusser M, Lim M, Hafler DA, et al.: Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 2015;11:504-514.
[PubMed]
26.
Belcaid Z, Phallen JA, Zeng J, et al.: Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PloS One 2014;9:e101764.
[PubMed]
27.
Reardon DA, Gokhale PC, Klein SR, et al.: Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 2016;4:124-135.
[PubMed]
28.
Hodi FS, O'Day SJ, McDermott DF, et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711-723.
[PubMed]
29.
Margolin K, Ernstoff MS, Hamid O, et al.: Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. Lancet Oncol 2012;13:459-465.
[PubMed]
30.
Di Giacomo AM, Ascierto PA, Pilla L, et al.: Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): An open-label, single-arm phase 2 trial. Lancet Oncol 2012;13:879-886.
[PubMed]
31.
Konstantinou MP, Dutriaux C, Gaudy-Marqueste C, et al.: Ipilimumab in melanoma patients with brain metastasis: A retro-spective multicentre evaluation of thirty-eight patients. Acta Derm Venereol 2014;94:45-49.
[PubMed]
32.
Silk AW, Bassetti MF, West BT, et al.: Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med 2013;2:899-906.
[PubMed]
33.
Tazi K, Hathaway A, Chiuzan C, Shirai K: Survival of melanoma patients with brain metastases treated with ipilimumab and stereotactic radiosurgery. Cancer Med 2015;4:1-6.
[PubMed]
34.
Kiess AP, Wolchok JD, Barker CA, et al.: Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: Safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys 2015;92:368-375.
[PubMed]
35.
Berghoff AS, Ricken G, Widhalm G, et al.: Tumour-infiltrating lymphocytes and expression of programmed death ligand 1 (PD-L1) in melanoma brain metastases. Histopathology 2015;66:289-299.
[PubMed]
36.
Harter PN, Bernatz S, Scholz A, et al.: Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget 2015;6:40836-40849.
[PubMed]
37.
Robert C, Long GV, Brady B, et al.: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320-330.
[PubMed]
38.
Robert C, Ribas A, Wolchok JD, et al.: Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014;384:1109-1117.
[PubMed]
39.
Rothermundt C, Hader C, Gillessen S: Successful treatment with an anti-PD-1 antibody for progressing brain metastases in renal cell cancer. Ann Oncol 2016;27:544-545.
[PubMed]
40.
Kluger HM, Goldberg SB, Sznol M, et al.: Safety and activity of pembrolizumab in melanoma patients with untreated brain metastases. J Clin Oncol 2015;33 (suppl, abstr 9009).
41.
Rizvi NA, Mazieres J, Planchard D, et al.: Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (checkmate 063): A phase 2, single-arm trial. Lancet Oncol 2015;16:257-265.
[PubMed]
42.
Goldberg SB, Gettinger SN, Mahajan A, et al.: Activity and safety of pembrolizumab in patients with metastatic non-small cell lung cancer with untreated brain metastases. J Clin Oncol 2015;33 (suppl; abstr 8035).
43.
Ahmed KA, Stallworth DG, Kim Y, et al.: Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol 2016;27:434-441.
[PubMed]
44.
Berghoff AS, Kiesel B, Widhalm G, et al.: Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 2015;17:1064-1075.
[PubMed]
45.
Nduom EK, Wei J, Yaghi NK, et al.: PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 2016;18:195-205.
[PubMed]
46.
Sampson JH, Vlahovic G, Sahebjam S, et al.: Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): Checkmate-143. J Clin Oncol 2015;33 (suppl; abstr 3010).
47.
Chiang CL, Coukos G, Kandalaft LE: Whole tumor antigen vaccines: Where are we? Vaccines (Basel) 2015;3:344-372.
[PubMed]
48.
Reardon DA, Wucherpfennig KW, Freeman G, et al.: An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013;12:597-615.
[PubMed]
49.
Sampson JH, Aldape KD, Archer GE, et al.: Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 2011;13:324-333.
[PubMed]
50.
Sampson JH, Heimberger AB, Archer GE, et al.: Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28:4722-4729.
[PubMed]
51.
Schuster J, Lai RK, Recht LD, et al.: A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: The ACT III study. Neuro Oncol 2015;17:854-861.
[PubMed]
52.
Reardon DA, Schuster J, Tran DD, Fink KL: ReACT: Overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J Clin Oncol 2015;33(suppl; abstr 2009).
53.
Johnson BF, Clay TM, Hobeika AC, et al.: Vascular endothelial growth factor and immunosuppression in cancer: Current knowledge and potential for new therapy. Expert Opin Biol Ther 2007;7:449-460.
[PubMed]
54.
Voron T, Colussi O, Marcheteau E, et al.: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015;212:139-148.
[PubMed]
55.
Hashimoto N, Tsuboi A, Kagawa N, et al.: Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: Safety and impact on immunological response. Cancer Immunol Immunother 2015;64:707-716.
[PubMed]
56.
Schumacher T, Bunse L, Pusch S, et al.: A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014;512:324-327.
[PubMed]
57.
Okada H, Butterfield LH, Hamilton RL, et al.: Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res 2015;21:286-294.
[PubMed]
58.
Pollack IF, Jakacki RI, Butterfield LH, et al.: Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol 2014;32:2050-2058.
[PubMed]
59.
Phuphanich S, Wheeler CJ, Rudnick JD, et al.: Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013;62:125-135.
[PubMed]
60.
Wen PY, Reardon DA, Phuphanich S, Aitken R: A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J Clin Oncol 2014;32:5s(suppl; abstr 2005).
61.
Weiss T, Weller M, Roth P: Immunotherapy for glioblastoma: Concepts and challenges. Curr Opin Neurol 2015;28:639-646.
[PubMed]
62.
Mitchell DA, Batich KA, Gunn MD, et al.: Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015;519:366-369.
[PubMed]
63.
Dai H, Wang Y, Lu X, Han W: Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 2016;108:pii:djv439.
[PubMed]
64.
Johnson LA, Scholler J, Ohkuri T, et al.: Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015;7:275ra222.
[PubMed]
65.
Brown CE, Badie B, Barish ME, et al.: Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 2015;21:4062-4072.
[PubMed]
66.
Gan HK, Fichtel L, Lassman AB, et al.: A phase I study evaluating ABT-414 in combination with temozolomide (TMZ) for subjects with recurrent or unresectable glioblastoma (GBM). J Clin Oncol 2014;32:5s.
You do not currently have access to this content.