Abstract
In medicine, biomarkers are a metric for disease state. More generally, a biomarker is anything that can be used as an indicator for a particular disease state or any physiological state of an organism. Here, we introduce functional and molecular biomarkers that are useful for categorizing defined subtypes of hearing disorder, which can help to selectively trace a particular dysfunction of the inner ear and the auditory pathway to disease.
References
1.
Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y: Evoked mechanical responses of isolated cochlear outer hair cells. Science 1985;227:194-196.
2.
Dallos P, Corey ME: The role of outer hair cell motility in cochlear tuning. Curr Opin Neurobiol 1991;1:215-220.
3.
Dallos P, Harris D: Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 1978;41:365-383.
4.
Ashmore J: Cochlear outer hair cell motility. Physiol Rev 2008;88:173-210.
5.
Dallos P: Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 2008;18:370-376.
6.
Miller JD, Watson CS, Covell WP: Deafening effects of noise on the cat. Acta Otolaryngol 1963;(suppl):176.
7.
Liberman MC, Dodds LW: Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 1984;16:55-74.
8.
Liberman MC, Dodds LW: Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 1984;16:43-53.
9.
Schneider ME, Belyantseva IA, Azevedo RB, Kachar B: Rapid renewal of auditory hair bundles. Nature 2002;418:837-838.
10.
Spoendlin H: Histopathology of noise deafness. J Otolaryngol 1985;14:282-286.
11.
Willott JF: Measurement of the auditory brainstem response (ABR) to study auditory sensitivity in mice. Curr Protoc Neurosci 2006;(chapter 8):Unit8 21B.
12.
Radeloff A, Cebulla M, Shehata-Dieler W: Akustisch evozierte Potenziale: Grundlagen und klinische Anwendung. Laryngorhinootologie 2014;93:625-637.
13.
Melcher JR, Kiang NY: Generators of the brainstem auditory evoked potential in cat. III. Identified cell populations. Hear Res 1996;93:52-71.
14.
Liberman MC, Chesney CP, Kujawa SG: Effects of selective inner hair cell loss on DPOAE and CAP in carboplatin-treated chinchillas. Auditory Neurosci 1997;3:255-268.
15.
El-Badry MM, McFadden SL: Electrophysiological correlates of progressive sensorineural pathology in carboplatin-treated chinchillas. Brain Res 2007;1134:122-130.
16.
Schuknecht HF, Woellner RC: Hearing losses following partial section of the cochlear nerve. Laryngoscope 1953;63:441-465.
17.
Kay RH: Hearing of modulation in sounds. Physiol Rev 1982;62:894-975.
18.
Stamper GC, Johnson TA: Auditory function in normal-hearing, noise-exposed human ears. Ear Hear 2015;36:172-184.
19.
Parthasarathy A, Bartlett E: Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. Hear Res 2012;289:52-62.
20.
King AJ, Sininger YS: Electrode configuration for auditory brainstem response audiometry. Am J Audiol 1992;1:63-67.
21.
Rüttiger L, Singer W, Panford-Walsh R, Matsumoto M, Lee SC, Zuccotti A, Zimmermann U, Jaumann M, Rohbock K, Xiong H, Knipper M: The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 2013;8:e57247.
22.
Singer W, Zuccotti A, Jaumann M, Lee SC, Panford-Walsh R, Xiong H, Zimmermann U, Franz C, Geisler HS, Köpschall I, Rohbock K, Varakina K, Verpoorten S, Reinbothe T, Schimmang T, Rüttiger L, Knipper M: Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 2013;47:261-279.
23.
Abernathy MM, Gauvin DV, Tapp RL, Yoder JD, Baird TJ: Utility of the auditory brainstem response evaluation in non-clinical drug safety evaluations. J Pharmacol Toxicol Methods 2015;75:111-117.
24.
Chiappa KH, Ropper AH: Evoked potentials in clinical medicine (first of two parts). N Engl J Med 1982;306:1140-1150.
25.
Picton TW, Stapells DR, Campbell KB: Auditory evoked potentials from the human cochlea and brainstem. J Otolaryngol Suppl 1981;9:1-41.
26.
Shera CA, Guinan JJ Jr: Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 1999;105:782-798.
27.
Liberman MC, Zuo J, Guinan JJ Jr: Otoacoustic emissions without somatic motility: Can stereocilia mechanics drive the mammalian cochlea? J Acoust Soc Am 2004;116:1649-1655.
28.
Kennedy HJ, Crawford AC, Fettiplace R: Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 2005;433:880-883.
29.
Avan P, Büki B, Petit C: Auditory distortions: origins and functions. Physiol Rev 2013;93:1563-1619.
30.
Kujawa SG, Liberman MC: Long-term sound conditioning enhances cochlear sensitivity. J Neurophysiol 1999;82:863-873.
31.
Chumak T, Rüttiger L, Lee SC, Campanelli D, Zuccotti A, Singer W, Popelar J, Gutsche K, Geisler HS, Schraven SP, Jaumann M, Panford-Walsh R, Hu J, Schimmang T, Zimmermann U, Syka J, Knipper M: BDNF in lower brain parts modifies auditory fiber activity to gain fidelity but increases the risk for generation of central noise after injury. Mol Neurobiol 2016;53:5607-5627.
32.
Zuccotti A, Kuhn S, Johnson SL, Franz C, Singer W, Hecker D, Geisler HS, Köpschall I, Rohbock K, Gutsche K, Dlugaiczyk J, Schick B, Marcotti W, Rüttiger L, Schimmang T, Knipper M: Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. J Neurosci 2012;32:8545-8553.
33.
Blakley BW, Garcia CE, da Sliva SR, Florêncio VM, Nagy JI: Elevated auditory brainstem response thresholds in mice with Connexin36 gene ablation. Acta Otolaryngol 2015;135:814-818.
34.
Shaffer LA, Withnell RH, Dhar S, Lilly DJ, Goodman SS, Harmon KM: Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity. Ear Hear 2003;24:367-379.
35.
Zelle D, Thiericke JP, Dalhoff E, Gummer AW: Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans. J Acoust Soc Am 2015;138:3475-3490.
36.
Eggermont JJ: Basic principles for electrocochleography. Acta Otolaryngol Suppl 1974;316:7-16.
37.
Winter H, Rüttiger L, Müller M, Kuhn S, Brandt N, Zimmermann U, Hirt B, Bress A, Sausbier M, Conscience A, Flamant F, Tian Y, Zuo J, Pfister M, Ruth P, Löwenheim H, Samarut J, Engel J, Knipper M: Deafness in TRβ mutants is caused by malformation of the tectorial membrane. J Neurosci 2009;29:2581-2587.
38.
Patuzzi RB, Yates GK, Johnstone BM: Outer hair cell receptor current and sensorineural hearing loss. Hear Res 1989;42:47-72.
39.
Kim JS, Nam EC, Park SI: Electrocochleography is more sensitive than distortion-product otoacoustic emission test for detecting noise-induced temporary threshold shift. Otolaryngol Head Neck Surg 2005;133:619-624.
40.
Santarelli R, Del Castillo I, Rodriguez-Ballesteros M, Scimemi P, Cama E, Arslan E, Starr A: Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. J Assoc Res Otolaryngol 2009;10:545-556.
41.
Kaf WA, Lewis KM, Yavuz E, Dixon SM, Van Ess M, Jamos AM, Delgado RE: Fast click rate electrocochleography and auditory brainstem response in normal-hearing adults using continuous loop averaging deconvolution. Ear Hear, Epub ahead of print.
42.
He DZ, Lovas S, Ai Y, Li Y, Beisel KW: Prestin at year 14: progress and prospect. Hear Res 2014;311:25-35.
43.
Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B: Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 2000;20:RC116.
44.
Weber T, Zimmermann U, Winter H, Mack A, Köpschall I, Rohbock K, Zenner HP, Knipper M: Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci USA 2002;99:2901-2906.
45.
Winter H, Braig C, Zimmermann U, Geisler HS, Franzer JT, Weber T, Ley M, Engel J, Knirsch M, Bauer K, Christ S, Walsh EJ, McGee J, Köpschall I, Rohbock K, Knipper M: Thyroid hormone receptors TRα1 and TRβ differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci 2006;119:2975-2984.
46.
Engel J, Braig C, Rüttiger L, Kuhn S, Zimmermann U, Blin N, Sausbier M, Kalbacher H, Münkner S, Rohbock K, Ruth P, Winter H, Knipper M: Two classes of outer hair cells along the tonotopic axis of the cochlea. Neuroscience 2006;143:837-849.
47.
Rüttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, Arntz C, Langer P, Hirt B, Müller M, Köpschall I, Pfister M, Münkner S, Rohbock K, Pfaff I, Rüsch A, Ruth P, Knipper M: Deletion of the Ca2+-activated potassium (BK) α-subunit but not the BKβ1-subunit leads to progressive hearing loss. Proc Natl Acad Sci USA 2004;101:12922-12927.
48.
Marcotti W, Kros CJ: Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 1999;520(pt 3):653-660.
49.
Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ: KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999;96:437-446.
50.
Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, Meyers J, Ensink RJ, Verstreken M, Declau F, Marres H, Kastury K, Bhasin S, McGuirt WT, Smith RJ, Cremers CW, Van de Heyning P, Willems PJ, Smith SD, Van Camp G: Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 1999;8:1321-1328.
51.
Van Hauwe P, Coucke PJ, Ensink RJ, Huygen P, Cremers CW, Van Camp G: Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Am J Med Genet 2000;93:184-187.
52.
Winter H, Braig C, Zimmermann U, Engel J, Rohbock K, Knipper M: Thyroid hormone receptor α1 is a critical regulator for the expression of ion channels during final differentiation of outer hair cells. Histochem Cell Biol 2007;128:65-75.
53.
Michna M, Knirsch M, Hoda JC, Münkner S, Langer P, Platzer J, Striessnig J, Engel J: CaV1.3 (α1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol 2003;553:747-758.
54.
Schaette R, McAlpine D: Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 2011;31:13452-13457.
55.
Tasaki I, Davis H, Eldredge DH: Exploration of cochlear potentials in guinea pig with a microelectrode. J Acoust Soc Am 1954;26.
56.
Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G, Houdon C, Lefevre GM, Hardelin JP, Richardson GP, Avan P, Petit C: Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 2008;456:255-258.
57.
Liberman MC: Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 1980;3:45-63.
58.
Spoendlin H: Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol 1969;67:239-254.
59.
Sachs MB, Abbas PJ: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 1974;56:1835-1847.
60.
Yates GK: Auditory-nerve spontaneous rates vary predictably with threshold. Hear Res 1991;57:57-62.
61.
Kujawa SG, Liberman MC: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 2009;29:14077-14085.
62.
Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L: Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 2016;44:173-184.
63.
Furman AC, Kujawa SG, Liberman MC: Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 2013;110:577-586.
64.
Sergeyenko Y, Lall K, Liberman MC, Kujawa SG: Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 2013;33:13686-13694.
65.
Kujawa SG, Liberman MC: Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 2015;330:191-199.
66.
Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J: Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 2014;112:1025-1039.
67.
Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF: Toward a differential diagnosis of hidden hearing loss in humans. PLoS One 2016;11:e0162726.
68.
Russell IJ, Sellick PM: Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J Physiol 1983;338:179-206.
69.
Durrant JD, Wang J, Ding DL, Salvi RJ: Are inner or outer hair cells the source of summating potentials recorded from the round window? J Acoust Soc Am 1998;104:370-377.
70.
Liberman MC: Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 1978;63:442-455.
71.
Oates P, Stapells DR: Frequency specificity of the human auditory brainstem and middle latency responses to brief tones. I. High-pass noise masking. J Acoust Soc Am 1997;102:3597-3608.
72.
Ferraro JA, Krishnan G: Cochlear potentials in clinical audiology. Audiol Neurootol 1997;2:241-256.
73.
Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC: Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 2010;30:7587-7597.
74.
Liberman MC, Dodds LW, Pierce S: Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 1990;301:443-460.
75.
Wichmann C, Moser T: Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res 2015;361:95-114.
76.
Jaumann M, Dettling J, Gubelt M, Zimmermann U, Gerling A, Paquet-Durand F, Feil S, Wolpert S, Franz C, Varakina K, Xiong H, Brandt N, Kuhn S, Geisler HS, Rohbock K, Ruth P, Schlossmann J, Hutter J, Sandner P, Feil R, Engel J, Knipper M, Rüttiger L: cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. Nat Med 2012;18:252-259.
77.
Liu K, Jiang X, Shi C, Shi L, Yang B, Shi L, Xu Y, Yang W, Yang S: Cochlear inner hair cell ribbon synapse is the primary target of ototoxic aminoglycoside stimuli. Mol Neurobiol 2013;48:647-654.
78.
Chen L, Xiong S, Liu Y, Shang X: Effect of different gentamicin dose on the plasticity of the ribbon synapses in cochlear inner hair cells of C57BL/6J mice. Mol Neurobiol 2012;46:487-494.
79.
Heinz MG, Young ED: Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. J Neurophysiol 2004;91:784-795.
80.
Heinz MG, Issa JB, Young ED: Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J Assoc Res Otolaryngol 2005;6:91-105.
81.
Ruel J, Chabbert C, Nouvian R, Bendris R, Eybalin M, Leger CL, Bourien J, Mersel M, Puel JL: Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci 2008;28:7313-7323.
82.
Johnson DH, Kiang NY: Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophys J 1976;16:719-734.
83.
Burkard RF, Don M: The auditory brainstem response; in Burkard RF, Don M, Eggermont JJ (eds): Auditory Evoked Potentials: Basic Principles and Clinical Application. Baltimore, Lippincott Williams & Wilkins, 2007, pp 229-250.
84.
Henry KS, Kale S, Scheidt RE, Heinz MG: Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas. Hear Res 2011;280:236-244.
85.
Verhulst S, Jagadeesh A, Mauermann M, Ernst F: Individual differences in auditory brainstem response wave characteristics: relations to different aspects of peripheral hearing loss. Trends Hear 2016;20:2331216516672186.
86.
Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, Shinn-Cunningham BG: Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci 2016;36:3755-3764.
87.
Attias J, Pratt H: Auditory evoked potentials and audiological follow-up of subjects developing noise-induced permanent threshold shift. Audiology 1984;23:498-508.
88.
Cook RO, Konishi T, Salt AN, Hamm CW, Lebetkin EH, Koo J: Brainstem-evoked responses of guinea pigs exposed to high noise levels in utero. Dev Psychobiol 1982;15:95-104.
89.
Gourévitch B, Doisy T, Avillac M, Edeline JM: Follow-up of latency and threshold shifts of auditory brainstem responses after single and interrupted acoustic trauma in guinea pig. Brain Res 2009;1304:66-79.
90.
Portmann M, Cazals Y, Negrevergne M, Aran JM: Transtympanic and surface recordings in the diagnosis of retrocochlear disorders. Acta Otolaryngol 1980;89:362-369.
91.
Møller AR, Jannetta PJ, Jho HD: Click-evoked responses from the cochlear nucleus: a study in human. Electroencephalogr Clin Neurophysiol 1994;92:215-224.
92.
Hashimoto I, Ishiyama Y, Yoshimoto T, Nemoto S: Brain-stem auditory-evoked potentials recorded directly from human brain-stem and thalamus. Brain 1981;104:841-859.
93.
Møller AR, Jannetta PJ: Evoked potentials from the inferior colliculus in man. Electroencephalogr Clin Neurophysiol 1982;53:612-620.
94.
Moser T, Starr A: Auditory neuropathy - neural and synaptic mechanisms. Nat Rev Neurol 2016;12:135-149.
95.
Plack CJ, Barker D, Prendergast G: Perceptual consequences of “hidden” hearing loss. Trends Hear 2014;18:2331216514550621.
96.
Shi L, Chang Y, Li X, Aiken S, Liu L, Wang J: Cochlear synaptopathy and noise-induced hidden hearing loss. Neural Plast 2016;2016:6143164.
97.
Viana LM, O'Malley JT, Burgess BJ, Jones DD, Oliveira CA, Santos F, Merchant SN, Liberman LD, Liberman MC: Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 2015;327:78-88.
98.
Hickox AE, Liberman MC: Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 2014;111:552-564.
99.
Fuchs K, Kohlhofer U, Quintanilla-Martinez L, Lamparter D, Kötter I, Reischl G, Röcken M, Pichler BJ, Kneilling M: In vivo imaging of cell proliferation enables the detection of the extent of experimental rheumatoid arthritis by 3′-deoxy-3′-18F-fluorothymidine and small-animal PET. J Nucl Med 2013;54:151-158.
100.
Gu JW, Herrmann BS, Levine RA, Melcher JR: Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 2012;13:819-833.
101.
Grodd W, Beckmann CF: Funktionelle MRT des Gehirns im Ruhezustand. Nervenarzt 2014;85:690-700.
102.
Lv H, Zhao P, Liu Z, Li R, Zhang L, Wang P, Yan F, Liu L, Wang G, Zeng R, Li T, Dong C, Gong S, Wang Z: Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: a seed-based functional connectivity study. Eur J Radiol 2016;85:2023-2029.
103.
Xu H, Fan W, Zhao X, Li J, Zhang W, Lei P, Liu Y, Wang H, Cheng H, Shi H: Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss. Hear Res 2016;335:138-148.
104.
Leaver AM, Seydell-Greenwald A, Rauschecker JP: Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res 2016;334:49-57.
105.
Van der Linden A, Van Meir V, Boumans T, Poirier C, Balthazart J: MRI in small brains displaying extensive plasticity. Trends Neurosci 2009;32:257-266.
106.
Gröschel M, Müller S, Götze R, Ernst A, Basta D: The possible impact of noise-induced Ca2+-dependent activity in the central auditory pathway: a manganese-enhanced MRI study. Neuroimage 2011;57:190-197.
107.
Cheung MM, Lau C, Zhou IY, Chan KC, Cheng JS, Zhang JW, Ho LC, Wu EX: BOLD fMRI investigation of the rat auditory pathway and tonotopic organization. Neuroimage 2012;60:1205-1211.
108.
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U: Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015;361:77-93.
109.
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U: Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013;111:17-33.
110.
Heeringa AN, van Dijk P: The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: a Wiener-kernel analysis. Hear Res 2016;331:47-56.
111.
Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K: The Arc of synaptic memory. Exp Brain Res 2010;200:125-140.
112.
Bramham CR, Worley PF, Moore MJ, Guzowski JF: The immediate early gene Arc/Arg3.1: regulation, mechanisms, and function. J Neurosci 2008;28:11760-11767.
113.
Korb E, Finkbeiner S: Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 2011;34:591-598.
114.
Reisinger E, Bresee C, Neef J, Nair R, Reuter K, Bulankina A, Nouvian R, Koch M, Buckers J, Kastrup L, Roux I, Petit C, Hell SW, Brose N, Rhee JS, Kugler S, Brigande JV, Moser T: Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. J Neurosci 2011;31:4886-4895.
115.
Ruel J, Wang J, Rebillard G, Eybalin M, Lloyd R, Pujol R, Puel JL: Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res 2007;227:19-27.
116.
Ramakrishnan NA, Drescher MJ, Drescher DG: Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel CaV1.3. J Biol Chem 2009;284:1364-1372.
117.
Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C: Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006;127:277-289.
118.
Nakayama D, Iwata H, Teshirogi C, Ikegaya Y, Matsuki N, Nomura H: Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci 2015;35:819-830.
119.
Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, Hadjab S, Zimmermann U, Köpschall I, Rohbock K, Knipper M: Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 2007;145:715-726.
120.
Panford-Walsh R, Singer W, Rüttiger L, Hadjab S, Tan J, Geisler HS, Zimmermann U, Köpschall I, Rohbock K, Vieljans A, Oestreicher E, Knipper M: Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and Arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol Pharmacol 2008;74:595-604.
121.
Singer W, Geisler HS, Knipper M: The Geisler method: tracing activity-dependent cGMP plasticity changes upon double detection of mRNA and protein on brain slices. Methods Mol Biol 2013;1020:223-233.
122.
Singer W, Geisler HS, Panford-Walsh R, Knipper M: Detection of excitatory and inhibitory synapses in the auditory system using fluorescence immunohistochemistry and high-resolution fluorescence microscopy. Methods Mol Biol 2016;1427:263-276.
123.
Pinal CS, Tobin AJ: Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 1998;5:109-118.
124.
Gray DT, Engle JR, Rudolph ML, Recanzone GH: Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol 2014;522:4074-4084.
125.
Turner JG, Parrish JL, Zuiderveld L, Darr S, Hughes LF, Caspary DM, Idrezbegovic E, Canlon B: Acoustic experience alters the aged auditory system. Ear Hear 2013;34:151-159.
126.
Kawaguchi Y, Kondo S: Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 2002;31:277-287.
127.
Burianova J, Ouda L, Profant O, Syka J: Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 2009;44:161-169.
128.
Gray DT, Rudolph ML, Engle JR, Recanzone GH: Parvalbumin increases in the medial and lateral geniculate nuclei of aged rhesus macaques. Front Aging Neurosci 2013;5:69.
129.
Ouda L, Profant O, Syka J: Age-related changes in the central auditory system. Cell Tissue Res 2015;361:337-358.
130.
Fyk-Kolodziej BE, Shimano T, Gafoor D, Mirza N, Griffith RD, Gong TW, Holt AG: Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma. Front Neuroanat 2015;9:88.
131.
Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW: Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci USA 2015;112:3535-3540.
132.
Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J: Gamma and beta frequency oscillations in response to novel auditory stimuli: a comparison of human electroencephalogram (EEG) data with in vitro models. Proc Natl Acad Sci USA 2000;97:7645-7650.
133.
Pallesen KJ, Bailey CJ, Brattico E, Gjedde A, Palva JM, Palva S: Experience drives synchronization: the phase and amplitude dynamics of neural oscillations to musical chords are differentially modulated by musical expertise. PLoS One 2015;10:e0134211.
134.
Bosch JA: The use of saliva markers in psychobiology: mechanisms and methods. Monogr Oral Sci 2014;24:99-108.
135.
Biondi M, Picardi A: Psychological stress and neuroendocrine function in humans: the last two decades of research. Psychother Psychosom 1999;68:114-150.
136.
Wester VL, van Rossum EF: Clinical applications of cortisol measurements in hair. Eur J Endocrinol 2015;173:M1-M10.
137.
de Kloet ER: Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur J Pharmacol 2013;719:53-62.
138.
de Kloet ER: From receptor balance to rational glucocorticoid therapy. Endocrinology 2014;155:2754-2769.
139.
Erichsen S, Bagger-Sjöbäck D, Curtis L, Zuo J, Rarey K, Hultcrantz M: Appearance of glucocorticoid receptors in the inner ear of the mouse during development. Acta Otolaryngol 1996;116:721-725.
140.
Shimazaki T, Ichimiya I, Suzuki M, Mogi G: Localization of glucocorticoid receptors in the murine inner ear. Ann Otol Rhinol Laryngol 2002;111:1133-1138.
141.
Canlon B, Meltser I, Johansson P, Tahera Y: Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 2007;226:61-69.
142.
O'Byrne PM, Pedersen S: Measuring efficacy and safety of different inhaled corticosteroid preparations. J Allergy Clin Immunol 1998;102:879-886.
143.
Niedermeier K, Braun S, Fauser C, Kiefer J, Straubinger RK, Stark T: A safety evaluation of dexamethasone-releasing cochlear implants: comparative study on the risk of otogenic meningitis after implantation. Acta Otolaryngol 2012;132:1252-1260.
144.
O'Leary SJ, Monksfield P, Kel G, Connolly T, Souter MA, Chang A, Marovic P, O'Leary JS, Richardson R, Eastwood H: Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear Res 2013;298:27-35.
145.
Mazurek B, Szczepek AJ, Hebert S: Stress and tinnitus. HNO 2015;63:258-265.
146.
Alsalman OA, Tucker D, Vanneste S: Salivary stress-related responses in tinnitus: a preliminary study in young male subjects with tinnitus. Front Neurosci 2016;10:338.
147.
Kim DK, Chung DY, Bae SC, Park KH, Yeo SW, Park SN: Diagnostic value and clinical significance of stress hormones in patients with tinnitus. Eur Arch Otorhinolaryngol 2014;271:2915-2921.
148.
Mazurek B, Haupt H, Olze H, Szczepek AJ: Stress and tinnitus - from bedside to bench and back. Front Syst Neurosci 2012;6:47.
149.
Calabrese F, Molteni R, Racagni G, Riva MA: Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 2009;34(suppl 1):S208-S216.
150.
Serra-Millàs M: Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World J Psychiatry 2016;6:84-101.
151.
Radka SF, Holst PA, Fritsche M, Altar CA: Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res 1996;709:122-301.
152.
Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ: Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998;37:1553-1561.
153.
Karege F, Schwald M, Cisse M: Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 2002;328:261-264.
154.
Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, Sun B: Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 2000;470:113-117.
155.
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML: BDNF as a biomarker for successful treatment of mood disorders: a systematic and quantitative meta-analysis. J Affect Disord 2015;174:432-440.
156.
Huang TL, Lin CC, Chen RF, Lee CT: Higher blood MLL1 mRNA and BDNF promoter IV on histone H3K4me3 levels in patients with schizophrenia. Psychiatry Res 2016;243:207-209.
157.
Cattaneo A, Cattane N, Begni V, Pariante CM, Riva MA: The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry 2016;6:e958.
158.
Kleimann A, Kotsiari A, Sperling W, Gröschl M, Heberlein A, Kahl KG, Hillemacher T, Bleich S, Kornhuber J, Frieling H: BDNF serum levels and promoter methylation of BDNF exon I, IV and VI in depressed patients receiving electroconvulsive therapy. J Neural Transm (Vienna) 2015;122:925-928.
159.
Durai M, Searchfield G: Anxiety and depression, personality traits relevant to tinnitus: a scoping review. Int J Audiol 2016;55:605-615.
160.
Pattyn T, Van Den Eede F, Vanneste S, Cassiers L, Veltman DJ, Van De Heyning P, Sabbe BC: Tinnitus and anxiety disorders: a review. Hear Res 2016;333:255-265.
161.
Langguth B, Landgrebe M, Kleinjung T, Sand GP, Hajak G: Tinnitus and depression. World J Biol Psychiatry 2011;12:489-500.
© 2017 S. Karger AG, Basel
2017
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.