Abstract
There is general agreement that distortion product (DP) otoacoustic emissions elicited by stimuli up to 80–90 dB SPL originate from the saturating nonlinearity of the cochlear amplifier at the basilar membrane site, S, where the responses to the two primary tones overlap. There are, however, different interpretations of how the inner ear transmits the effects of this process to the stapes. The supporters of transmission line models assert that the phenomenon depends upon two main mechanisms: (1) the generation of forward and backward traveling waves (TWs) by DP oscillations at S; (2) the backward propagation of wave components reflected by ‘micromechanical impedance perturbations’ at the sites where the DP TWs peak. However, quantitative predictions based on this view are still lacking. In contrast, here we show, using a nonlinear hydrodynamic model, that the emissions are propagated almost instantaneously through the fluid.