Compared to intravitreal injection, subretinal injection has more direct effects on the targeting cells in the subretinal space, which provides a new therapeutic method for vitreoretinal diseases, especially when gene therapy and/or cell therapy is involved. To date, subretinal delivery has been widely applied by scientists and clinicians as a more precise and efficient route of ocular drug delivery for gene therapies and cell therapies including stem cells in many degenerative vitreoretinal diseases, such as retinitis pigmentosa, age-related macular degeneration, and Leber's congenital amaurosis. However, clinicians should be aware of adverse events and possible complications when performing subretinal delivery. In the present review, the subretinal injection used in vitreoretinal diseases for basic research and clinical trials is summarized and described. Different methods of subretinal delivery, as well as its benefits and challenges, are also briefly introduced.

1.
Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y: Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 2004;23:253-281.
2.
Gaudana R, Ananthula HK, Parenky A, Mitra AK: Ocular drug delivery. AAPS J 2010;12:348-360.
3.
Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U; VIEW 1 and VIEW 2 Study Groups: Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 2012;119:2537-2548.
4.
Korobelnik JF, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, Midena E, Kaiser PK, Terasaki H, Marcus DM, Nguyen QD, Jaffe GJ, Slakter JS, Simader C, Soo Y, Schmelter T, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Zeitz O, Metzig C, Brown DM: Intravitreal aflibercept for diabetic macular edema. Ophthalmology 2014;121:2247-2254.
5.
Simo R, Sundstrom JM, Antonetti DA: Ocular Anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 2014;37:893-899.
6.
Osaadon P, Fagan XJ, Lifshitz T, Levy J: A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond) 2014;28:510-520.
7.
Chen SN, Lian I, Hwang YC, Chen YH, Chang YC, Lee KH, Chuang CC, Wu WC: Intravitreal anti-vascular endothelial growth factor treatment for retinopathy of prematurity: comparison between ranibizumab and bevacizumab. Retina 2015;35:667-674.
8.
Falavarjani KG, Nguyen QD: Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 2013;27:787-794.
9.
Muhlfriedel R, Michalakis S, Garcia Garrido M, Biel M, Seeliger MW: Optimized technique for subretinal injections in mice. Methods Mol Biol 2013;935:343-349.
10.
Ikeda Y, Yonemitsu Y, Miyazaki M, Kohno R, Murakami Y, Murata T, Tabata T, Ueda Y, Ono F, Suzuki T, Ageyama N, Terao K, Hasegawa M, Sueishi K, Ishibashi T: Stable retinal gene expression in nonhuman primates via subretinal injection of SIVagm-based lentiviral vectors. Hum Gene Ther 2009;20:573-579.
11.
Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, Hou R, Deng WT, Boye SL, Almaghamsi A, Al Saikhan F, Al-Dhibi H, Birch D, Chung C, Colak D, LaVail MM, Vollrath D, Erger K, Wang W, Conlon T, Zhang K, Hauswirth W, Alkuraya FS: Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 2016;135:327-343.
12.
Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C, Wright JF, Wellman J, High KA, Auricchio A, Bennett J, Simonelli F: Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2. Ophthalmology 2013;120:1283-1291.
13.
Jo YJ, Sonoda KH, Oshima Y, Takeda A, Kohno R, Yamada J, Hamuro J, Yang Y, Notomi S, Hisatomi T, Ishibashi T: Establishment of a new animal model of focal subretinal fibrosis that resembles disciform lesion in advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 2011;52:6089-6095.
14.
Yang Y, Takeda A, Yoshimura T, Oshima Y, Sonoda KH, Ishibashi T: IL-10 is significantly involved in HSP70-regulation of experimental subretinal fibrosis. PLoS One 2013;8: e80288.
15.
Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, Assawachananont J, Kimura T, Saito K, Terasaki H, Eiraku M, Sasai Y, Takahashi M: Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci USA 2016;113: E81-90.
16.
Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H, Mandai M, Morinaga C, Takahashi M, Kawamata S: Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One 2014;9: e85336.
17.
Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, Shiina T, Ogasawara K, Hirami Y, Kurimoto Y, Takahashi M: Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Rep 2016;7:635-648.
18.
Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M: Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2014;2:205-218.
19.
Yavuz B, Kompella UB: Ocular drug delivery. Handb Exp Pharmacol 2017;242:57-93.
20.
Patel A, Cholkar K, Agrahari V, Mitra AK: Ocular drug delivery systems: an overview. World J Pharmacol 2013;2:47-64.
21.
Short BG: Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 2008;36:49-62.
22.
Choonara YE, Pillay V, Danckwerts MP, Carmichael TR, du Toit LC: A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 2010;99:2219-2239.
23.
Hwang DJ, Kim YW, Woo SJ, Park KH: Comparison of systemic adverse events associated with intravitreal anti-VEGF injection: ranibizumab versus bevacizumab. J Korean Med Sci 2012;27:1580-1585.
24.
Vujosevic S, Torresin T, Bini S, Convento E, Pilotto E, Parrozzani R, Midena E: Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 2017;95:464-471.
25.
Giocanti-Auregan A, Tadayoni R, Grenet T, Fajnkuchen F, Nghiem-Buffet S, Delahaye-Mazza C, Quentel G, Cohen SY: Estimation of the need for bilateral intravitreal anti-VEGF injections in clinical practice. BMC Ophthalmol 2016;16:142.
26.
Bek T, Jorgensen CM: The systemic blood pressure and oxygen saturation in retinal arterioles predict the effect of intravitreal anti-VEGF treatment on diabetic maculopathy. Invest Ophthalmol Vis Sci 2016;57:5429-5434.
27.
Gemenetzi M, Lotery AJ, Patel PJ: Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. Eye (Lond) 2017;31:1-9.
28.
Chatziralli I, Nicholson L, Sivaprasad S, Hykin P: Intravitreal steroid and anti-vascular endothelial growth agents for the management of retinal vein occlusion: evidence from randomized trials. Expert Opin Biol Ther 2015;15:1685-1697.
29.
Gunther J, Ip M: Intravitreal steroid versus macular laser for treatment of diabetic macular edema. Curr Diab Rep 2009;9:272-276.
30.
Jonas JB, Rensch F: Intravitreal steroid slow-release device replacing repeated intravitreal triamcinolone injections for sympathetic ophthalmia. Eur J Ophthalmol 2008;18:834-836.
31.
Logan SA, Weng CY, Carvounis PE: Intravitreal steroid implants in the management of retinal disease and uveitis. Int Ophthalmol Clin 2016;56:127-149.
32.
Tracy CJ, Whiting RE, Pearce JW, Williamson BG, Vansteenkiste DP, Gillespie LE, Castaner LJ, Bryan JN, Coates JR, Jensen CA, Katz ML: Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2016;152:77-87.
33.
De Silva SR, Charbel Issa P, Singh MS, Lipinski DM, Barnea-Cramer AO, Walker NJ, Barnard AR, Hankins MW, MacLaren RE: Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Ther 2016;23:767-774.
34.
Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, Dejneka NS, Pearce-Kelling SE, Maguire AM, Palczewski K, Hauswirth WW, Jacobson SG: Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005;12:1072-1082.
35.
Emre E, Yuksel N, Duruksu G, Pirhan D, Subasi C, Erman G, Karaoz E: Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 2015;17:543-559.
36.
Flachsbarth K, Kruszewski K, Jung G, Jankowiak W, Riecken K, Wagenfeld L, Richard G, Fehse B, Bartsch U: Neural stem cell-based intraocular administration of ciliary neurotrophic factor attenuates the loss of axotomized ganglion cells in adult mice. Invest Ophthalmol Vis Sci 2014;55:7029-7039.
37.
Bollinger KE, Smith SD: Prevalence and management of elevated intraocular pressure after placement of an intravitreal sustained-release steroid implant. Curr Opin Ophthalmol 2009;20:99-103.
38.
Fitzgerald JT, Saunders L, Ridge B, White AJ, Goldberg I, Clark B, Mills RA, Craig JE: Severe intraocular pressure response to periocular or intravitreal steroid treatment in Australia and New Zealand: data from the Australian and New Zealand Ophthalmic Surveillance Unit. Clin Exp Ophthalmol 2015;43:234-238.
39.
Kanchanaranya N, Rojdamrongratana D, Piyasoonthorn P: Incidence of post-intravitreal anti-VEGF endophthalmitis at Thammasat University Hospital. J Med Assoc Thai 2015;98:489-494.
40.
Kuhicka-Trzaska A, Jedrychowska-Jamhorska JJ, Kulig-Stochmal A, Morawski K, Romanowska-Dixon B: (Endophthalmitis as a complication of intravitreal anti-VEGF therapy in patients with exudative age-related macular degeneration and degenerative myopia (in Polish). Klin Oczna 2015;117:35-39.
41.
Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM: Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 2008;14:2211-2226.
42.
Maia M, Kellner L, de Juan E Jr, Smith R, Farah ME, Margalit E, Lakhanpal RR, Grebe L, Au Eong KG, Humayun MS: Effects of indocyanine green injection on the retinal surface and into the subretinal space in rabbits. Retina 2004;24:80-91.
43.
Little CW, Castillo B, DiLoreto DA, Cox C, Wyatt J, del Cerro C, del Cerro M: Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina. Invest Ophthalmol Vis Sci 1996;37:204-211.
44.
Bindewald A, Roth F, Van Meurs J, Holz FG: Transplantation of retinal pigment pithelium (RPE) following CNV removal in patients with AMD. Techniques, results, outlook (in German). Ophthalmologe 2004;101:886-894.
45.
Smith AJ, Bainbridge JW, Ali RR: Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 2012;19:154-161.
46.
Bainbridge JW, Tan MH, Ali RR: Gene therapy progress and prospects: the eye. Gene Ther 2006;13:1191-1197.
47.
Day TP, Byrne LC, Schaffer DV, Flannery JG: Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol 2014;801:687-693.
48.
Georgiadis A, Duran Y, Ribeiro J, Abelleira-Hervas L, Robbie SJ, Sunkel-Laing B, Fourali S, Gonzalez-Cordero A, Cristante E, Michaelides M, Bainbridge JW, Smith AJ, Ali RR: Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther 2016;23:857-862.
49.
Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D, Cherel Y, Chenuaud P, Samulski J, Moullier P, Rolling F: Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003;7:774-781.
50.
Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, Cideciyan AV, Zeiss CJ, Komaromy AM, Kaushal S, Roman AJ, Windsor EA, Sumaroka A, Pearce-Kelling SE, Conlon TJ, Chiodo VA, Boye SL, Flotte TR, Maguire AM, Bennett J, Hauswirth WW: Safety of recombinant adeno-associated virus type 2- RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006;13:1074-1084.
51.
Annear MJ, Mowat FM, Bartoe JT, Querubin J, Azam SA, Basche M, Curran PG, Smith AJ, Bainbridge JW, Ali RR, Petersen-Jones SM: Successful gene therapy in older Rpe65-deficient dogs following subretinal injection of an adeno-associated vector expressing RPE65. Hum Gene Ther 2013;24:883-893.
52.
Watanabe S, Sanuki R, Ueno S, Koyasu T, Hasegawa T, Furukawa T: Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders. PLoS One 2013;8:e54146.
53.
Dai X, Zhang H, Han J, He Y, Zhang Y, Qi Y, Pang JJ: Effects of subretinal gene transfer at different time points in a mouse model of retinal degeneration. PLoS One 2016;11: e0156542.
54.
Lambert NG, Zhang X, Rai RR, Uehara H, Choi S, Carroll LS, Das SK, Cahoon JM, Kirk BH, Bentley BM, Ambati BK: Subretinal AAV2.COMP-Ang1 suppresses choroidal neovascularization and vascular endothelial growth factor in a murine model of age-related macular degeneration. Exp Eye Res 2016;145:248-257.
55.
Xu H, Zhang L, Gu L, Lu L, Gao G, Li W, Xu G, Wang J, Gao F, Xu JY, Yao J, Wang F, Zhang J, Xu GT: Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci 2014;55:1519-1530.
56.
Seo S, Mullins RF, Dumitrescu AV, Bhattarai S, Gratie D, Wang K, Stone EM, Sheffield V, Drack AV: Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci 2013;54:6118-6132.
57.
Wu L, Lam S, Cao H, Guan R, Duan R, van der Kooy D, Bremner R, Molday RS, Hu J: Subretinal gene delivery using helper-dependent adenoviral vectors. Cell Biosci 2011;1:15.
58.
Murakami Y, Ikeda Y, Yonemitsu Y, Miyazaki M, Inoue M, Hasegawa M, Sueishi K, Ishibashi T: Inhibition of choroidal neovascularization via brief subretinal exposure to a newly developed lentiviral vector pseudotyped with Sendai viral envelope proteins. Hum Gene Ther 2010;21:199-209.
59.
Tian L, Lei B, Shao J, Wei L, Kijlstra A, Yang P: AAV2-mediated combined subretinal delivery of IFN-alpha and IL-4 reduces the severity of experimental autoimmune uveoretinitis. PLoS One 2012;7:e37995.
60.
Tian L, Yang P, Lei B, Shao J, Wang C, Xiang Q, Wei L, Peng Z, Kijlstra A: AAV2-mediated subretinal gene transfer of hIFN-alpha attenuates experimental autoimmune uveoretinitis in mice. PLoS One 2011;6:e19542.
61.
Shao J, Tian L, Lei B, Wei L, Yang Y, Kijlstra A, Yang P: AAV2-mediated subretinal gene transfer of mIL-27p28 attenuates experimental autoimmune uveoretinitis in mice. PLoS One 2012;7:e37773.
62.
Lai CM, Estcourt MJ, Himbeck RP, Lee SY, Yew-San Yeo I, Luu C, Loh BK, Lee MW, Barathi A, Villano J, Ang CL, van der Most RG, Constable IJ, Dismuke D, Samulski RJ, Degli-Esposti MA, Rakoczy EP: Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Ther 2012;19:999-1009.
63.
Amado D, Mingozzi F, Hui D, Bennicelli JL, Wei Z, Chen Y, Bote E, Grant RL, Golden JA, Narfstrom K, Syed NA, Orlin SE, High KA, Maguire AM, Bennett J: Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2010;2:21ra16.
64.
Barker SE, Broderick CA, Robbie SJ, Duran Y, Natkunarajah M, Buch P, Balaggan KS, MacLaren RE, Bainbridge JW, Smith AJ, Ali RR: Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 2009;11:486-497.
65.
Peng Y, Zhang Y, Huang B, Luo Y, Zhang M, Li K, Li W, Wen W, Tang S: Survival and migration of pre-induced adult human peripheral blood mononuclear cells in retinal degeneration slow (rds) mice three months after subretinal transplantation. Curr Stem Cell Res Ther 2014;9:124-133.
66.
Huang Q, Xu P, Xia X, Hu HH, Wang F, Li HM: Subretinal transplantation of human fetal lung fibroblasts expressed ciliary neurotrophic factor gene prevent photoreceptor degeneration in RCS rats (in Chinese). Zhonghua Yan Ke Za Zhi 2006;42:127-130.
67.
Li F, Zeng Y, Xu H, Yin ZQ: Subretinal transplantation of retinal pigment epithelium overexpressing fibulin-5 inhibits laser-induced choroidal neovascularization in rats. Exp Eye Res 2015;136:78-85.
68.
Jones MK, Lu B, Saghizadeh M, Wang S: Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration. Mol Vis 2016;22:472-490.
69.
Huang R, Baranov P, Lai K, Zhang X, Ge J, Young MJ: Functional and morphological analysis of the subretinal injection of human retinal progenitor cells under Cyclosporin A treatment. Mol Vis 2014;20:1271-1280.
70.
Klassen H, Kiilgaard JF, Zahir T, Ziaeian B, Kirov I, Scherfig E, Warfvinge K, Young MJ: Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells 2007;25:1222-1230.
71.
Francis PJ, Wang S, Zhang Y, Brown A, Hwang T, McFarland TJ, Jeffrey BG, Lu B, Wright L, Appukuttan B, Wilson DJ, Stout JT, Neuringer M, Gamm DM, Lund RD: Subretinal transplantation of forebrain progenitor cells in nonhuman primates: survival and intact retinal function. Invest Ophthalmol Vis Sci 2009;50:3425-3431.
72.
Wojciechowski AB, Englund U, Lundberg C, Warfvinge K: Long-term survival and glial differentiation of the brain-derived precursor cell line RN33B after subretinal transplantation to adult normal rats. Stem Cells 2002;20:163-173.
73.
Amirpour N, Karamali F, Rabiee F, Rezaei L, Esfandiari E, Razavi S, Dehghani A, Razmju H, Nasr-Esfahani MH, Baharvand H: Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev 2012;21:42-53.
74.
Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, Corneo B, Holz FG, Temple S, Stern JH, Blenkinsop TA: Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports 2014;2:64-77.
75.
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Barshack I, Rosner M, Rotenstreich Y: Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 2014;118:135-144.
76.
Guan Y, Cui L, Qu Z, Lu L, Wang F, Wu Y, Zhang J, Gao F, Tian H, Xu L, Xu G, Li W, Jin Y, Xu GT: Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. Curr Mol Med 2013;13:1419-1431.
77.
Brant Fernandes RA, Koss MJ, Falabella P, Stefanini FR, Maia M, Diniz B, Ribeiro R, Hu Y, Hinton D, Clegg DO, Chader G, Humayun MS: An innovative surgical technique for subretinal transplantation of human embryonic stem cell-derived retinal pigmented epithelium in Yucatan mini pigs: preliminary results. Ophthalmic Surg Lasers Imaging Retina 2016;47:342-351.
78.
Koss MJ, Falabella P, Stefanini FR, Pfister M, Thomas BB, Kashani AH, Brant R, Zhu D, Clegg DO, Hinton DR, Humayun MS: Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatan minipigs. Graefes Arch Clin Exp Ophthalmol 2016;254:1553-1565.
79.
Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR: Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008;358:2231-2239.
80.
Maguire AM, Simonelli F, Pierce EA, Pugh EN, Jr., Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J: Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008;358:2240-2248.
81.
Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Bennett J: Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009;374:1597-1605.
82.
Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG: Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008;19:979-990.
83.
Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, Schwartz SD, Blumenkranz MS, Chalberg TW, Degli-Esposti MA, Constable IJ: Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 2015;386:2395-2403.
84.
Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, McAllister IL, Butler S, Barone SB, Schwartz SD, Blumenkranz MS, Rakoczy EP: Phase 2a aandomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine 2016;14:168-175.
85.
Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R: Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 2012;379:713-720.
86.
Schwartz SD, Tan G, Hosseini H, Nagiel A: Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci 2016;57:ORSFc1-9.
87.
Leung EH, Flynn HW Jr, Albini TA, Medina CA: Retinal detachment after subretinal stem cell transplantation. Ophthalmic Surg Lasers Imaging Retina 2016;47:600-601.
88.
Gaudana R, Jwala J, Boddu SH, Mitra AK: Recent perspectives in ocular drug delivery. Pharm Res 2009;26:1197-1216.
89.
Costa RA, Jorge R, Calucci D, Cardillo JA, Melo LA Jr, Scott IU: Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study. Invest Ophthalmol Vis Sci 2006;47:4569-4578.
90.
Moshfeghi DM, Kaiser PK, Scott IU, Sears JE, Benz M, Sinesterra JP, Kaiser RS, Bakri SJ, Maturi RK, Belmont J, Beer PM, Murray TG, Quiroz-Mercado H, Mieler WF: Acute endophthalmitis following intravitreal triamcinolone acetonide injection. Am J Ophthalmol 2003;136:791-796.
91.
Ausayakhun S, Yuvaves P, Ngamtiphakom S, Prasitsilp J: Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J Med Assoc Thai 2005;88(suppl 9):S15-S20.
92.
Stout JT, Francis PJ: Surgical approaches to gene and stem cell therapy for retinal disease. Hum Gene Ther 2011;22:531-535.
93.
Kolstad KD, Dalkara D, Guerin K, Visel M, Hoffmann N, Schaffer DV, Flannery JG: Changes in adeno-associated virus-mediated gene delivery in retinal degeneration. Hum Gene Ther 2010;21:571-578.
94.
Wert KJ, Skeie JM, Davis RJ, Tsang SH, Mahajan VB: Subretinal injection of gene therapy vectors and stem cells in the perinatal mouse eye. J Vis Exp DOI: 10.3791/4286.
95.
Conlon TJ, Deng WT, Erger K, Cossette T, Pang JJ, Ryals R, Clement N, Cleaver B, McDoom I, Boye SE, Peden MC, Sherwood MB, Abernathy CR, Alkuraya FS, Boye SL, Hauswirth WW: Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev 2013;24:23-28.
96.
Wert KJ, Davis RJ, Sancho-Pelluz J, Nishina PM, Tsang SH: Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet 2013;22:558-567.
97.
Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, Windsor EA, Conlon TJ, Sumaroka A, Roman AJ, Byrne BJ, Jacobson SG: Vision 1 year after gene therapy for Leber's congenital amaurosis. N Engl J Med 2009;361:725-727.
98.
Kay MA, Glorioso JC, Naldini L: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33-40.
99.
Li W, Kong F, Li X, Dai X, Liu X, Zheng Q, Wu R, Zhou X, Lu F, Chang B, Li Q, Hauswirth WW, Qu J, Pang JJ: Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye. Mol Vis 2009;15:267-275.
100.
Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V, Hauswirth WW: Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 2008;14:1760-1769.
101.
Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D, Behar-Cohen F: Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 2006;58:1224-1242.
102.
Carr AJ, Smart MJ, Ramsden CM, Powner MB, da Cruz L, Coffey PJ: Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 2013;36:385-395.
103.
Hu Y, Liu L, Lu B, Zhu D, Ribeiro R, Diniz B, Thomas PB, Ahuja AK, Hinton DR, Tai YC, Hikita ST, Johnson LV, Clegg DO, Thomas BB, Humayun MS: A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res 2012;48:186-191.
104.
Hillenkamp J, Surguch V, Framme C, Gabel VP, Sachs HG: Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol 2010;248:5-11.
105.
Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C: Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 2001;7:131-137.
106.
Qi Y, Dai X, Zhang H, He Y, Zhang Y, Han J, Zhu P, Zhang Y, Zheng Q, Li X, Zhao C, Pang J: Trans-corneal subretinal injection in mice and its effect on the function and morphology of the retina. PLoS One 2015;10: e0136523.
107.
Schlichtenbrede FC, da Cruz L, Stephens C, Smith AJ, Georgiadis A, Thrasher AJ, Bainbridge JW, Seeliger MW, Ali RR: Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 2003;5:757-764.
108.
Ehlers JP, Petkovsek DS, Yuan A, Singh RP, Srivastava SK: Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surg Lasers Imaging Retina 2015;46:327-332.
109.
Pfeffer B, Wiggert B, Lee L, Zonnenberg B, Newsome D, Chader G: The presence of a soluble interphotoreceptor retinol-binding protein (IRBP) in the retinal interphotoreceptor space. J Cell Physiol 1983;117:333-341.
110.
Gerding H: A new approach towards a minimal invasive retina implant. J Neural Eng 2007;4:S30-S37.
111.
Parikh S, Le A, Davenport J, Gorin MB, Nusinowitz S, Matynia A: An alternative and Validated Injection Method for Accessing the Subretinal Space via a Transcleral Posterior Approach. J Vis Exp DOI: 10.3791/ 54808.
112.
Nickerson JM, Goodman P, Chrenek MA, Bernal CJ, Berglin L, Redmond TM, Boatright JH: Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods Mol Biol 2012;884:53-69.
113.
Komaromy AM, Varner SE, de Juan E, Acland GM, Aguirre GD: Application of a new subretinal injection device in the dog. Cell Transplant 2006;15:511-519.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.