Background/Aims: Herpes simplex virus (HSV) type I keratitis remains a leading cause of corneal morbidity, despite the availability of effective antiviral drugs. Improved understanding of virus-host interactions at the level of the host DNA damage response (DDR), a known factor in the development of HSV-1 keratitis, may shed light on potential new therapeutic targets. This report examines the role of checkpoint kinase 2 (Chk2), a DDR mediator protein, in corneal epithelial HSV-1 infection. Methods: A small-molecule inhibitor of Chk2 (Chk2 inhibitor II) was applied to HSV-1-infected cultured human corneal epithelial cells (hTCEpi and HCE) as well as to explanted and organotypically cultured human and rabbit corneas. Infection levels were assessed by plaque assay and real-time PCR. RNAi-mediated depletion of Chk2 was performed to confirm the effect of the inhibitor. Results: Inhibition of the Chk2 kinase activity greatly suppresses the cytopathic effect, genome replication and infectious progeny production in vitro and ex vivo. Conclusion: This report demonstrates the critical role of Chk2 kinase in the establishment of HSV-1 corneal epithelial infection. These data contribute to our understanding of herpesvirus-host interactions and underscore the significance of DDR activation in HSV-1 keratitis.

1.
Farooq AV, Shah A, Shukla D: The role of herpesviruses in ocular infections. Virus Adaptation Treat 2010;2:115-123.
2.
Toma HS, Murina AT, Areaux RG Jr, Neumann DM, Bhattacharjee PS, Foster TP, Kaufman HE, Hill JM: Ocular HSV-1 latency, reactivation and recurrent disease. Semin Ophthalmol 2008;23:249-273.
3.
Farooq AV, Shukla D: Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol 2012;57:448-462.
4.
Rowe AM, St Leger AJ, Jeon S, Dhaliwal DK, Knickelbein JE, Hendricks RL: Herpes keratitis. Prog Retin Eye Res 2013;32:88-101.
5.
Choong K, Walker NJ, Apel AJ, Whitby M: Aciclovir-resistant herpes keratitis. Clin Experiment Ophthalmol 2010;38:309-313.
6.
Laibson PR: Resistant herpes simplex keratitis. Clin Experiment Ophthalmol 2010;38:227-228.
7.
Duan R, de Vries RD, Osterhaus AD, Remeijer L, Verjans GM: Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis 2008;198:659-663.
8.
Burrel S, Aime C, Hermet L, Ait-Arkoub Z, Agut H, Boutolleau D: Surveillance of herpes simplex virus resistance to antivirals: a 4-year survey. Antiviral Res 2013;100:365-372.
9.
Piret J, Boivin G: Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 2011;55:459-472.
10.
Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL: CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 2000;191:1459-1466.
11.
Kaye S, Choudhary A: Herpes simplex keratitis. Prog Retin Eye Res 2006;25:355-380.
12.
Thygeson P: Controversies in Ophthalmology. Philadelphia, WB Saunders, 1977, pp 450-469.
13.
Jaanus SD, Cheetham JK, Lesher GA: Anti-inflammatory drugs; in Bartlett JD, Jaanus SD (eds): Clinical Ocular Pharmacology. Boston, Butterworth, 2001, pp 273-276.
14.
Malvy D, Treilhaud M, Bouee S, Crochard A, Vallee D, El Hasnaoui A, Aymard M: A retrospective, case-control study of acyclovir resistance in herpes simplex virus. Clin Infect Dis 2005;41:320-326.
15.
Gaudreau A, Hill E, Balfour HH Jr, Erice A, Boivin G: Phenotypic and genotypic characterization of acyclovir-resistant herpes simplex viruses from immunocompromised patients. J Infect Dis 1998;178:297-303.
16.
Alekseev O, Donovan K, Azizkhan-Clifford J: Inhibition of ataxia telangiectasia mutated (ATM) kinase suppresses herpes simplex virus type 1 (HSV-1) keratitis. Invest Ophthalmol Vis Sci 2014;55:706-715.
17.
Lilley CE, Schwartz RA, Weitzman MD: Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 2007;15:119-126.
18.
Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD: DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci USA 2005;102:5844-5849.
19.
Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ: Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 2000;97:10389-10394.
20.
Bartek J, Falck J, Lukas J: Chk2 kinase - a busy messenger. Nat Rev Mol Cell Biol 2001;2:877-886.
21.
Bartek J, Lukas C, Lukas J: Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 2004;5:792-804.
22.
Bartek J, Lukas J: Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003;3:421-429.
23.
Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001;410:842-847.
24.
Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, Zhou BB, Bartek J, Lukas J: Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003;3:247-258.
25.
Pommier Y, Weinstein JN, Aladjem MI, Kohn KW: Chk2 molecular interaction map and rationale for Chk2 inhibitors. Clin Cancer Res 2006;12:2657-2661.
26.
Hirao A, Cheung A, Duncan G, Girard PM, Elia AJ, Wakeham A, Okada H, Sarkissian T, Wong JA, Sakai T, De Stanchina E, Bristow RG, Suda T, Lowe SW, Jeggo PA, Elledge SJ, Mak TW: Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol 2002;22:6521-6532.
27.
Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K, Motoyama N: Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 2002;21:5195-5205.
28.
Tan Y, Raychaudhuri P, Costa RH: Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 2007;27:1007-1016.
29.
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F: Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004;24:708-718.
30.
Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ: The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 2008;27:3977-3985.
31.
Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J, Neff DK, Huang L, Crawford S, Pandit CR, Karlsson L, Breitenbucher JG: Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 2005;48:1873-1885.
32.
Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, Cavanagh HD, Jester JV: Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci 2005;46:470-478.
33.
Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H: An sv40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 1995;36:614-621.
34.
Jensen FC, Girardi AJ, Gilden RV, Koprowski H: Infection of human and simian tissue cultures with Rous sarcoma virus. Proc Natl Acad Sci USA 1964;52:53-59.
35.
Smith KO: Relationship between the envelope and the infectivity of herpes simplex virus. Proc Soc Exp Biol Med 1964;115:814-816.
36.
Wee S, Wiederschain D, Maira SM, et al: PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 2008;105:13057-13062.
37.
Wiederschain D, Wee S, Chen L, et al: Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 2009;8:498-504.
38.
Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L: A third-generation lentivirus vector with a conditional packaging system. J Virol 1998;72:8463-8471.
39.
Alekseev O, Tran AH, Azizkhan-Clifford J: Ex vivo organotypic corneal model of acute epithelial herpes simplex virus type I infection. J Vis Exp 2012:e3631.
40.
Kim YH, Seo SK, Choi BK, Kang WJ, Kim CH, Lee SK, Kwon BS: 4-1BB costimulation enhances HSV-1-specific CD8+ T cell responses by the induction of CD11c+CD8+ T cells. Cell Immunol 2005;238:76-86.
41.
Berkovich E, Monnat RJ Jr, Kastan MB: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007;9:683-690.
42.
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
43.
Li H, Baskaran R, Krisky DM, Bein K, Grandi P, Cohen JB, Glorioso JC: Chk2 is required for HSV-1 ICP0-mediated G2/M arrest and enhancement of virus growth. Virology 2008;375:13-23.
44.
Shiloh Y, Ziv Y: The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013;14:197-210.
45.
Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY, Shen CY: Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J 2008;27:3140-3150.
46.
Inoue Y, Kitagawa M, Taya Y: Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J 2007;26:2083-2093.
47.
Chen L, Gilkes DM, Pan Y, Lane WS, Chen J: ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 2005;24:3411-3422.
48.
Shieh SY, Ahn J, Tamai K, Taya Y, Prives C: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000;14:289-300.
49.
Martinez LA, Goluszko E, Chen HZ, Leone G, Post S, Lozano G, Chen Z, Chauchereau A: E2F3 is a mediator of DNA damage-induced apoptosis. Mol Cell Biol 2010;30:524-536.
50.
Stevens C, Smith L, La Thangue NB: Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 2003;5:401-409.
51.
Yang S, Kuo C, Bisi JE, Kim MK: PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 2002;4:865-870.
52.
Zhou M, Meng Z, Jobson AG, Pommier Y, Veenstra TD: Detection of in vitro kinase generated protein phosphorylation sites using γ[18O4]-ATP and mass spectrometry. Anal Chem 2007;79:7603-7610.
53.
Ward SA, Weller SK: HSV-1 DNA replication; in Weller SK (ed): Alphaherpesviruses: Molecular Virology. Wymondham, Caister Academic Press, 2011, pp 89-112.
54.
Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD: A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 2010;29:943-955.
55.
Chaurushiya MS, Weitzman MD: Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair 2009;8:1166-1176.
56.
Roizman B, Knipe DM, Whitley RJ: Herpes simplex viruses; in Knipe DM, Howley PM (eds): Fields Virology. Philadelphia, Lippincott Williams & Wilkins, 2007, vol 2, pp 2501-2602.
57.
Conn KL, Hendzel MJ, Schang LM: Linker histones are mobilized during infection with herpes simplex virus type 1. J Virol 2008;82:8629-8646.
58.
Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD: PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2011;124:280-291.
59.
Lallemand-Breitenbach V, de Thé H: PML nuclear bodies. Cold Spring Harb Perspect Biol 2010;2:a000661.
60.
Venere M, Mochan TA, Halazonetis TD: Chk2 leaves the PML depot. Nat Cell Biol 2002;4:E255-E256.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.