Transscleral delivery has emerged as an attractive method for treating retinal disorders because it offers localized delivery of drugs as a less invasive method compared to intravitreal administration. Numerous novel transscleral drug delivery systems ranging from microparticles to implants have been reported. However, transscleral delivery is currently not as clinically effective as intravitreal delivery in the treatment of retinal diseases. Transscleral drug delivery systems require drugs to permeate through several layers of ocular tissue (sclera, Bruch’s membrane-choroid, retinal pigment epithelium) to reach the neuroretina. As a result, a steep drug concentration gradient from the sclera to the retina is established, and very low concentrations of drug are detected in the retina. This steep gradient is created by the barriers to transport that hinder drug molecules from successfully reaching the retina. A review of the literature reveals 3 types of barriers hindering transscleral drug delivery: static, dynamic and metabolic. While static barriers have been examined in detail, the literature on dynamic and metabolic barriers is lacking. These barriers must be investigated further to gain a more complete understanding of the transport barriers involved in transscleral drug delivery.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.