Purpose: To investigate a possible role of the nitric oxide (NO)-cGMP signal transduction system in phagocytosis of rod outer segments (ROS) by cultured retinal pigment epithelial (RPE) cells. Methods: Primary cultures of RPE cells from 10-day-old Brown Norway rats were used to study the phagocytosis of ROS by these cells. Phagocytosis of ROS was evaluated with or without an inhibitor of nitric oxide synthase (NOS), NG-nitro-L-arginine (L-NNA), and the reverse effects of L-NNA by L-arginine and 8-bromo-cGMP on phagocytosis were also studied. NO-associated cGMP production by RPE cells was monitored during phagocytosis using L-NNA. NOS activity was assayed in RPE cells and ROS to locate the source of NO. Results: Phagocytosis of ROS was inhibited by L-NNA but not by D-NNA. L-NNA inhibited the ingestion in a dose-dependent manner, but not the binding of ROS. The inhibition was reversed by L-arginine and also by an NO donor, SIN-1. RPE cells challenged with ROS showed increased cGMP activity, which was significantly reduced by L-NNA and again restored by an overdose of L-arginine. NOS activity was found in RPE cells but not in ROS. Conclusions: Our data show that cGMP plays a role in the ingestion phase of ROS phagocytosis by RPE cells via a cGMP second-messenger system.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.