Article PDF first page preview

Article PDF first page preview

Introduction: The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)’s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. Methods: In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°–8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). Results: qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. Conclusions: In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.

1.
Heier
JS
,
Lad
EM
,
Holz
FG
,
Rosenfeld
PJ
,
Guymer
RH
,
Boyer
D
, et al
.
Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials
.
Lancet
.
2023
;
402
(
10411
):
1434
48
.
2.
Khanani
AM
,
Patel
SS
,
Staurenghi
G
,
Tadayoni
R
,
Danzig
CJ
,
Eichenbaum
DA
, et al
.
Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial
.
Lancet
.
2023
;
402
(
10411
):
1449
58
.
3.
Ehlers
JP
,
Zahid
R
,
Kaiser
PK
,
Heier
JS
,
Brown
DM
,
Meng
X
, et al
.
Longitudinal assessment of ellipsoid zone integrity, subretinal hyperreflective material, and subretinal pigment epithelium disease in neovascular age-related macular degeneration
.
Ophthalmol Retina
.
2021
;
5
(
12
):
1204
13
.
4.
Liu
J
,
Shen
M
,
Laiginhas
R
,
Herrera
G
,
Li
J
,
Shi
Y
, et al
.
Onset and progression of persistent choroidal hypertransmission defects in intermediate age-related macular degeneration: a novel clinical trial endpoint
.
Am J Ophthalmol
.
2023
;
254
:
11
22
.
5.
Vogl
W-D
,
Riedl
S
,
Mai
J
,
Reiter
GS
,
Lachinov
D
,
Bogunović
H
, et al
.
Predicting topographic disease progression and treatment response of pegcetacoplan in geographic atrophy quantified by deep learning
.
Ophthalmol Retina
.
2023
;
7
(
1
):
4
13
.
6.
Schmitz-Valckenberg
S
,
Brinkmann
CK
,
Alten
F
,
Herrmann
P
,
Stratmann
NK
,
Göbel
AP
, et al
.
Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2011
;
52
(
10
):
7640
6
.
7.
Holmen
IC
,
Aul
B
,
Pak
JW
,
Trane
RM
,
Blodi
B
,
Klein
M
, et al
.
Precursors and development of geographic atrophy with autofluorescence imaging: age-related Eye Disease Study 2 report number 18
.
Ophthalmol Retina
.
2019
;
3
(
9
):
724
33
.
8.
Delori
F
,
Greenberg
JP
,
Woods
RL
,
Fischer
J
,
Duncker
T
,
Sparrow
J
, et al
.
Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope
.
Invest Ophthalmol Vis Sci
.
2011
;
52
(
13
):
9379
90
.
9.
Greenberg
JP
,
Duncker
T
,
Woods
RL
,
Smith
RT
,
Sparrow
JR
,
Delori
FC
.
Quantitative fundus autofluorescence in healthy eyes
.
Invest Ophthalmol Vis Sci
.
2013
;
54
(
8
):
5684
93
.
10.
Gliem
M
,
Müller
PL
,
Finger
RP
,
McGuinness
MB
,
Holz
FG
,
Charbel Issa
P
.
Quantitative fundus autofluorescence in early and intermediate age-related macular degeneration
.
JAMA Ophthalmol
.
2016
;
134
(
7
):
817
24
.
11.
Orellana-Rios
J
,
Yokoyama
S
,
Agee
JM
,
Challa
N
,
Freund
KB
,
Yannuzzi
LA
, et al
.
Quantitative fundus autofluorescence in non-neovascular age-related macular degeneration
.
Ophthalmic Surg Lasers Imaging
.
2018
;
49
(
10
):
S34
S42
.
12.
Reiter
GS
,
Told
R
,
Baratsits
M
,
Hecht
A
,
Schlanitz
FG
,
Sacu
S
, et al
.
Repeatability and reliability of quantitative fundus autofluorescence imaging in patients with early and intermediate age‐related macular degeneration
.
Acta Ophthalmol
.
2019
;
97
(
4
):
e526
e532
.
13.
Reiter
GS
,
Told
R
,
Schlanitz
FG
,
Bogunovic
H
,
Baumann
L
,
Sacu
S
, et al
.
Impact of drusen volume on quantitative fundus autofluorescence in early and intermediate age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2019
;
60
(
6
):
1937
42
.
14.
Reiter
GS
,
Told
R
,
Baumann
L
,
Sacu
S
,
Schmidt-Erfurth
U
,
Pollreisz
A
.
Investigating a growth prediction model in advanced age-related macular degeneration with solitary geographic atrophy using quantitative autofluorescence
.
Retina
.
2020
;
40
(
9
):
1657
64
.
15.
Reiter
GS
,
Hacker
V
,
Told
R
,
Schranz
M
,
Krotka
P
,
Schlanitz
FG
, et al
.
Longitudinal changes in quantitative autofluorescence during progression from intermediate to late age-related macular degeneration
.
Retina
.
2021
;
41
(
6
):
1236
41
.
16.
Berlin
A
,
Clark
ME
,
Swain
TA
,
Fischer
NA
,
McGwin
G
,
Sloan
KR
, et al
.
Impact of the aging lens and posterior capsular opacification on quantitative autofluorescence imaging in age-related macular degeneration
.
Transl Vis Sci Technol
.
2022
;
11
(
10
):
23
.
17.
Chandra
S
,
Grewal
MK
,
Gurudas
S
,
Sondh
R
,
Bird
A
,
Jeffery
G
, et al
.
Quantitative autofluorescence in non-neovascular age related macular degeneration
.
Biomedicines
.
2023
;
11
(
2
):
560
.
18.
Reiter
GS
,
Schwarzenbacher
L
,
Schartmüller
D
,
Röggla
V
,
Leydolt
C
,
Menapace
R
, et al
.
Influence of lens opacities and cataract severity on quantitative fundus autofluorescence as a secondary outcome of a randomized clinical trial
.
Sci Rep
.
2021
;
11
(
1
):
12685
9
.
19.
Charng
J
,
Tan
R
,
Luu
CD
,
Sadigh
S
,
Stambolian
D
,
Guymer
RH
, et al
.
Imaging lenticular autofluorescence in older subjects
.
Invest Ophthalmol Vis Sci
.
2017
;
58
(
12
):
4940
7
.
20.
Feeney
L
.
Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies
.
Invest Ophthalmol Vis Sci
.
1978
;
17
(
7
):
583
600
.
21.
Salcedo-Villanueva
G
,
Lopez-Contreras
Y
,
Gonzalez-H Leon
A
,
Romo-Aguas
JC
,
Garcia-Aguirre
G
,
Cernichiaro-Espinosa
LA
, et al
.
Fundus autofluorescence in premature infants
.
Sci Rep
.
2021
;
11
(
1
):
8823
.
22.
Wing
GL
,
Blanchard
GC
,
Weiter
JJ
.
The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium
.
Invest Ophthalmol Vis Sci
.
1978
;
17
(
7
):
601
7
.
23.
Ach
T
,
Huisingh
C
,
McGwin
G
,
Messinger
JD
,
Zhang
T
,
Bentley
MJ
, et al
.
Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium
.
Invest Ophthalmol Vis
.
2014
;
55
(
8
):
4832
41
.
24.
Hunter
JJ
,
Morgan
JI
,
Merigan
WH
,
Sliney
DH
,
Sparrow
JR
,
Williams
DR
.
The susceptibility of the retina to photochemical damage from visible light
.
Prog Retin Eye Res
.
2012
;
31
(
1
):
28
42
.
25.
Westeneng-van Haaften
SC
,
Boon
CJ
,
Cremers
FP
,
Hoefsloot
LH
,
den Hollander
AI
,
Hoyng
CB
.
Clinical and genetic characteristics of late-onset Stargardt’s disease
.
Ophthalmology
.
2012
;
119
(
6
):
1199
210
.
26.
Mata
NL
,
Lichter
JB
,
Vogel
R
,
Han
Y
,
Bui
TV
,
Singerman
LJ
.
Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration
.
Retina
.
2013
;
33
(
3
):
498
507
.
27.
Petrukhin
K
.
Pharmacological inhibition of lipofuscin accumulation in the retina as a therapeutic strategy for dry AMD treatment
.
Drug Discov Today Ther Strateg
.
2013
;
10
(
1
):
e11
e20
.
28.
Lambertus
S
,
van Huet
RA
,
Bax
NM
,
Hoefsloot
LH
,
Cremers
FP
,
Boon
CJ
, et al
.
Early-onset stargardt disease: phenotypic and genotypic characteristics
.
Ophthalmology
.
2015
;
122
(
2
):
335
44
.
29.
Hussain
RM
,
Ciulla
TA
,
Berrocal
AM
,
Gregori
NZ
,
Flynn
HW
Jr
,
Lam
BL
.
Stargardt macular dystrophy and evolving therapies
.
Expert Opin Biol Ther
.
2018
;
18
(
10
):
1049
59
.
30.
Rosenfeld
PJ
,
Dugel
PU
,
Holz
FG
,
Heier
JS
,
Pearlman
JA
,
Novack
RL
, et al
.
Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial
.
Ophthalmology
.
2018
;
125
(
10
):
1556
67
.
31.
Cabral de Guimaraes
TA
,
Daich Varela
M
,
Georgiou
M
,
Michaelides
M
.
Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions
.
Br J Ophthalmol
.
2022
;
106
(
3
):
297
304
.
32.
Gambril
JA
,
Sloan
KR
,
Swain
TA
,
Huisingh
C
,
Zarubina
AV
,
Messinger
JD
, et al
.
Quantifying retinal pigment epithelium dysmorphia and loss of histologic autofluorescence in age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2019
;
60
(
7
):
2481
93
.
33.
Ablonczy
Z
,
Higbee
D
,
Anderson
DM
,
Dahrouj
M
,
Grey
AC
,
Gutierrez
D
, et al
.
Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium
.
Invest Ophthalmol Vis Sci
.
2013
;
54
(
8
):
5535
42
.
34.
Pallitto
P
,
Ablonczy
Z
,
Jones
EE
,
Drake
RR
,
Koutalos
Y
,
Crouch
RK
, et al
.
A2E and lipofuscin distributions in macaque retinal pigment epithelium are similar to human
.
Photochem Photobiol Sci
.
2015
;
14
(
10
):
1888
95
.
35.
Bermond
K
,
Wobbe
C
,
Tarau
I-S
,
Heintzmann
R
,
Hillenkamp
J
,
Curcio
CA
, et al
.
Autofluorescent granules of the human retinal pigment epithelium: phenotypes, intracellular distribution, and age-related topography
.
Invest Ophthalmol Vis Sci
.
2020
;
61
(
5
):
35
.
36.
Arunkumar
R
,
Gorusupudi
A
,
Li
B
,
Blount
JD
,
Nwagbo
U
,
Kim
HJ
, et al
.
Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4−/−/Bco2−/− double knockout mice
.
Exp Eye Res
.
2021
;
209
:
108680
.
37.
Kotnala
A
,
Senthilkumari
S
,
Wu
G
,
Stewart
TG
,
Curcio
CA
,
Halder
N
, et al
.
Retinal pigment epithelium in human donor eyes contains higher levels of bisretinoids including A2E in periphery than macula
.
Invest Ophthalmol Vis Sci
.
2022
;
63
(
6
):
6
.
38.
Wang
JJ
,
Rochtchina
E
,
Lee
AJ
,
Chia
E-M
,
Smith
W
,
Cumming
RG
, et al
.
Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study
.
Ophthalmology
.
2007
;
114
(
1
):
92
8
.
39.
Joachim
N
,
Mitchell
P
,
Burlutsky
G
,
Kifley
A
,
Wang
JJ
.
The incidence and progression of age-related macular degeneration over 15 years: the Blue Mountains Eye Study
.
Ophthalmology
.
2015
;
122
(
12
):
2482
9
.
40.
Pollreisz
A
,
Reiter
GS
,
Bogunovic
H
,
Baumann
L
,
Jakob
A
,
Schlanitz
FG
, et al
.
Topographic distribution and progression of soft drusen volume in age-related macular degeneration implicate neurobiology of fovea
.
Invest Ophthalmol Vis Sci
.
2021
;
62
(
2
):
26
.
41.
Sura
AA
,
Chen
L
,
Messinger
JD
,
Swain
TA
,
McGwin
G
,
Freund
KB
, et al
.
Measuring the contributions of basal laminar deposit and bruch’s membrane in age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2020
;
61
(
13
):
19
.
42.
Chen
L
,
Messinger
JD
,
Kar
D
,
Duncan
JL
,
Curcio
CA
.
Biometrics, impact, and significance of basal linear deposit and subretinal drusenoid deposit in age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2021
;
62
(
1
):
33
.
43.
Ferris
FL
,
Wilkinson
C
,
Bird
A
,
Chakravarthy
U
,
Chew
E
,
Csaky
K
, et al
.
Clinical classification of age-related macular degeneration
.
Ophthalmology
.
2013
;
120
(
4
):
844
51
.
44.
Curcio
CA
,
McGwin
G
,
Sadda
SR
,
Hu
Z
,
Clark
ME
,
Sloan
KR
, et al
.
Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods
.
BMC Ophthalmol
.
2020
;
20
:
196
17
.
45.
Owsley
C
,
Swain
TA
,
McGwin
G
,
Clark
ME
,
Kar
D
,
Crosson
JN
, et al
.
How vision is impaired from aging to early and intermediate age-related macular degeneration: insights from ALSTAR2 baseline
.
Transl Vis Sci Technol
.
2022
;
11
(
7
):
17
.
46.
Davis
MD
,
Gangnon
RE
,
Lee
LY
,
Hubbard
LD
,
Klein
B
,
Klein
R
, et al
.
The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS report No. 17
.
Arch Ophthalmol
.
2005
;
123
(
11
):
1484
98
.
47.
Echols
BS
,
Clark
ME
,
Swain
TA
,
Chen
L
,
Kar
D
,
Zhang
Y
, et al
.
Hyperreflective foci and specks are associated with delayed rod-mediated dark adaptation in nonneovascular age-related macular degeneration
.
Ophthalmol Retina
.
2020
;
4
(
11
):
1059
68
.
48.
Theelen
T
Scanning laser imaging of the retina basic concepts and clinical applications
.
2011
.
49.
von der Emde
L
,
Guymer
RH
,
Pfau
M
,
Caruso
E
,
Sivarajah
P
,
Hodgson
LA
, et al
.
Natural history of quantitative autofluorescence in intermediate age-related macular degeneration
.
Retina
.
2021
;
41
(
4
):
694
700
.
50.
Kleefeldt
N
,
Bermond
K
,
Tarau
I-S
,
Hillenkamp
J
,
Berlin
A
,
Sloan
KR
, et al
.
Quantitative fundus autofluorescence: advanced analysis tools
.
Transl Vis Sci Technol
.
2020
;
9
(
8
):
2
.
51.
Rochon-Duvigneaud
A
.
Recherches sur la fovea de la rétine humaine et particulièrement sur le bouquet des cônes centraux
.
Arch Anat Microsc
.
1907
;
9
:
315
42
.
52.
Polyak
SL
The retina
.
1941
.
53.
Ach
T
,
Tolstik
E
,
Messinger
JD
,
Zarubina
AV
,
Heintzmann
R
,
Curcio
CA
.
Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2015
;
56
(
5
):
3242
52
.
54.
Chen
L
,
Messinger
JD
,
Ferrara
D
,
Freund
KB
,
Curcio
CA
.
Fundus autofluorescence in neovascular age-related macular degeneration, a clinicopathologic correlation relevant to macular atrophy
.
Ophthalmol Retina
.
2021
;
5
(
11
):
1085
96
.
55.
Sparrow
JR
,
Blonska
A
,
Flynn
E
,
Duncker
T
,
Greenberg
JP
,
Secondi
R
, et al
.
Quantitative fundus autofluorescence in mice: correlation with HPLC quantitation of RPE lipofuscin and measurement of retina outer nuclear layer thickness
.
Invest Ophthalmol Vis Sci
.
2013
;
54
(
4
):
2812
20
.
56.
Von der Emde
L
,
Mallwitz
M
,
Vaisband
M
,
Hasenauer
J
,
Saßmannshausen
M
,
Terheyden
JH
, et al
.
Retest variability and patient reliability indices of quantitative fundus autofluorescence in age-related macular degeneration: a MACUSTAR study report
.
Sci Rep
.
2023
;
13
(
1
):
17417
.
57.
Negishi
K
,
Ohnuma
K
,
Hirayama
N
,
Noda
T
;
Policy-Based Medical Services Network Study Group for Intraocular Lens and Refractive Surgery
.
Effect of chromatic aberration on contrast sensitivity in pseudophakic eyes
.
Arch Ophthalmol
.
2001
;
119
(
8
):
1154
8
.
58.
Erie
JC
,
Bandhauer
MH
.
Intraocular lens surfaces and their relationship to postoperative glare
.
J Cataract Refract Surg
.
2003
;
29
(
2
):
336
41
.
59.
Zhao
H
,
Mainster
MA
.
The effect of chromatic dispersion on pseudophakic optical performance
.
Br J Ophthalmol
.
2007
;
91
(
9
):
1225
9
.
60.
Packer
M
,
Rajan
M
,
Ligabue
E
,
Heiner
P
.
Clinical properties of a novel, glistening-free, single-piece, hydrophobic acrylic IOL
.
Clin Ophthalmol
.
2014
;
8
:
421
7
.
61.
Chang
DH
,
Rocha
KM
.
Intraocular lens optics and aberrations
.
Curr Opin Ophthalmol
.
2016
;
27
(
4
):
298
303
.
62.
Kar
D
,
Corradetti
G
,
Amjad
M
,
Swain
TA
,
Clark
ME
,
McGwin
G
, et al
.
Choriocapillaris flow impairment under the fovea is associated with delayed rod-mediated dark adaptation in the perifovea of eyes with early and intermediate age-related macular degeneration: ALSTAR2 baseline
.
Invest Ophthalmol Vis Sci
.
2023
;
64
(
8
):
921
1
.
63.
Zanzottera
EC
,
Messinger
JD
,
Ach
T
,
Smith
RT
,
Curcio
CA
.
Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium
.
Invest Ophthalmol Vis Sci
.
2015
;
56
(
5
):
3269
78
.
64.
Zanzottera
EC
,
Messinger
JD
,
Ach
T
,
Smith
RT
,
Freund
KB
,
Curcio
CA
.
The Project MACULA retinal pigment epithelium grading system for histology and optical coherence tomography in age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2015
;
56
(
5
):
3253
68
.
65.
Curcio
CA
,
Zanzottera
EC
,
Ach
T
,
Balaratnasingam
C
,
Freund
KB
.
Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration
.
Invest Ophthalmol Vis Sci
.
2017
;
58
(
6
):
BIO211
26
.
66.
Xu
X
,
Liu
X
,
Wang
X
,
Clark
ME
,
McGwin
G
Jr
,
Owsley
C
, et al
.
Retinal pigment epithelium degeneration associated with subretinal drusenoid deposits in age-related macular degeneration
.
Am J Ophthalmol
.
2017
;
175
:
87
98
.
67.
Curcio
CA
.
Soft drusen in age-related macular degeneration: biology and targeting via the oil spill strategies
.
Invest Ophthalmol Vis Sci
.
2018
;
59
(
4
):
AMD160
81
.
68.
Li
M
,
Huisingh
C
,
Messinger
J
,
Dolz-Marco
R
,
Ferrara
D
,
Freund
KB
, et al
.
Histology of geographic atrophy secondary to age-related macular degeneration: a multilayer approach
.
Retina
.
2018
;
38
(
10
):
1937
53
.
69.
Sadda
SR
,
Guymer
R
,
Holz
FG
,
Schmitz-Valckenberg
S
,
Curcio
CA
,
Bird
AC
, et al
.
Consensus definition for atrophy associated with age-related macular degeneration on OCT: classification of atrophy report 3
.
Ophthalmology
.
2018
;
125
(
4
):
537
48
.
70.
Li
M
,
Dolz-Marco
R
,
Huisingh
C
,
Messinger
JD
,
Feist
RM
,
Ferrara
D
, et al
.
Clinicopathologic correlation of geographic atrophy secondary to age-related macular degeneration
.
Retina
.
2019
;
39
(
4
):
802
16
.
71.
Chen
L
,
Messinger
JD
,
Ferrara
D
,
Freund
KB
,
Curcio
CA
.
Stages of drusen-associated atrophy in age-related macular degeneration visible via histologically validated fundus autofluorescence
.
Ophthalmol Retina
.
2021
;
5
(
8
):
730
42
.
72.
Lindell
M
,
Kar
D
,
Sedova
A
,
Kim
YJ
,
Packer
OS
,
Schmidt-Erfurth
U
, et al
.
Volumetric reconstruction of a human retinal pigment epithelial cell reveals specialized membranes and polarized distribution of organelles
.
Invest Ophthalmol Vis Sci
.
2023
;
64
(
15
):
35
.
73.
McGwin
G
,
Kar
D
,
Berlin
A
,
Clark
ME
,
Swain
TA
,
Crosson
JN
, et al
.
Macular and plasma xanthophylls are higher in age-related macular degeneration than in normal aging: Alabama study on early age-related macular degeneration 2 baseline
.
Ophthalmol Sci
.
2023
;
3
(
2
):
100263
.
74.
Borrelli
E
,
Lei
J
,
Balasubramanian
S
,
Uji
A
,
Cozzi
M
,
Sarao
V
, et al
.
Green emission fluorophores in eyes with atrophic age-related macular degeneration: a colour fundus autofluorescence pilot study
.
Br J Ophthalmol
.
2018
;
102
(
6
):
827
32
.
75.
Battaglia Parodi
M
,
Iacono
P
,
Papayannis
A
,
Alto
G
,
Buzzotta
A
,
Arrigo
A
, et al
.
Near-infrared fundus autofluorescence in early age-related macular degeneration
.
Eur J Ophthalmol
.
2020
;
30
(
6
):
1448
53
.
76.
Birtel
J
,
Bauer
T
,
Pauleikhoff
L
,
Rüber
T
,
Gliem
M
,
Charbel Issa
P
.
Fundus autofluorescence imaging using red excitation light
.
Sci Rep
.
2023
;
13
(
1
):
9916
.
77.
Hammer
M
,
Simon
R
,
Meller
D
,
Klemm
M
.
Combining fluorescence lifetime with spectral information in fluorescence lifetime imaging ophthalmoscopy (FLIO)
.
Biomed Opt Express
.
2022
;
13
(
10
):
5483
94
.
78.
Curcio
CA
,
Sloan
KR
,
Kalina
RE
,
Hendrickson
AE
.
Human photoreceptor topography
.
J Comp Neurol
.
1990
;
292
(
4
):
497
523
.
79.
Early Treatment of Diabetic Retinopathy Study Research Group
.
Classification of diabetic retinopathy from fluorescein angiograms: ETDRS report number 11
.
Ophthalmology
.
1991
;
98
(
5
):
807
22
.
You do not currently have access to this content.