Purpose: The aim of this study was to analyze retinal microvasculature in obese subjects as compared to a normal-weight population. Methods: In this case-control observational study, swept-source optical coherence tomography angiography (SS-OCTA) and adaptive optics (AO) were performed in eyes of nondiabetic, nonhypertensive, obese patients and in healthy controls. AO was used to calculate the wall-to-lumen ratio (WLR). The foveal avascular zone (FAZ), the macular vessel density, and the macular perfusion density of the superficial and deep capillary plexuses were analyzed in 6 × 6 mm macular OCTA cubes. SS-OCTA was also used to measure the choroidal thickness, the retinal nerve fiber layer (RNFL), and the vascular density of the retinal peripapillary capillary plexus. Results: The obese group included 45 eyes (24 patients), and the control group included 46 eyes (23 subjects). The central macular density and perfusion density were significantly lower in obese patients compared to controls, in the deep retinal layer (0.28 [0.01–0.69] vs. 1.24 [0.82–1.66], p = 0.006 and 0.006 [0.001–0.015] vs. 0.025 [0.016–0.034], p = 0.01), respectively, after adjustment for systolic blood pressure. No differences were found in macular vascular density in other areas, FAZ (circularity, area, perimeter), choroidal thickness, RNFL. WLR was increased in obese patients (0.252 [0.246–0.259] vs. 0.239 [0.231–0.245] in controls, p = 0.016). Conclusion: Obesity was associated with retinal microvascular changes regardless of the presence of diabetes and hypertension. Our findings suggest the presence of infraclinical microvascular changes directly associated with obesity, which can be identified noninvasively through retinal imaging.

1.
Giampaoli
S
,
Vannucchi
S
.
[Obesity and diabetes, a global problem: what does recent data tell us?]
.
Ig Sanita Pubbl
.
2016
;
72
(
6
):
561
70
.
2.
Calle
EE
,
Rodriguez
C
,
Walker-Thurmond
K
,
Thun
MJ
.
Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults
.
N Engl J Med
.
2003
;
348
(
17
):
1625
38
. .
3.
Park
K
,
Yasuda
N
,
Toyonaga
S
,
Yamada
SM
,
Nakabayashi
H
,
Nakasato
M
,
Significant association between leukoaraiosis and metabolic syndrome in healthy subjects
.
Neurology
.
2007
;
69
(
10
):
974
8
. .
4.
Yamashiro
K
,
Tanaka
R
,
Tanaka
Y
,
Miyamoto
N
,
Shimada
Y
,
Ueno
Y
,
Visceral fat accumulation is associated with cerebral small vessel disease
.
Eur J Neurol
.
2014
;
21
(
4
):
667
73
. .
5.
Kurth
T
,
Gaziano
JM
,
Rexrode
KM
,
Kase
CS
,
Cook
NR
,
Manson
JE
,
Prospective study of body mass index and risk of stroke in apparently healthy women
.
Circulation
.
2005
;
111
(
15
):
1992
8
. .
6.
Rexrode
KM
,
Hennekens
CH
,
Willett
WC
,
Colditz
GA
,
Stampfer
MJ
,
Rich-Edwards
JW
,
A prospective study of body mass index, weight change, and risk of stroke in women
.
JAMA
.
1997
;
277
(
19
):
1539
45
. .
7.
Baker
JL
,
Olsen
LW
,
Sørensen
TIA
.
Childhood body-mass index and the risk of coronary heart disease in adulthood
.
N Engl J Med
.
2007
;
357
(
23
):
2329
37
. .
8.
Wong
TY
,
Klein
R
,
Nieto
FJ
,
Klein
BEK
,
Sharrett
AR
,
Meuer
SM
,
Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case-control study. microvascular abnormalities and 10-year cardiovascular mortality: a population-based case-control study
.
Ophthalmology
.
2003
;
110
(
5
):
933
40
. .
9.
Wong
TY
,
Klein
R
,
Sharrett
AR
,
Duncan
BB
,
Couper
DJ
,
Tielsch
JM
,
Retinal arteriolar narrowing and risk of coronary heart disease in men and WomenThe atherosclerosis risk in communities study
.
JAMA
.
2002
;
287
(
9
):
1153
9
. .
10.
Hanff
TC
,
Sharrett
AR
,
Mosley
TH
,
Shibata
D
,
Knopman
DS
,
Klein
R
,
Retinal microvascular abnormalities predict progression of brain microvascular disease: an atherosclerosis risk in communities magnetic resonance imaging study
.
Stroke
.
2014
;
45
(
4
):
1012
7
. .
11.
Cheung
N
,
Mosley
T
,
Islam
A
,
Kawasaki
R
,
Sharrett
AR
,
Klein
R
,
Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study
.
Brain J Neurol
.
2010
;
133
(
Pt 7
):
1987
93
. .
12.
Wong
TY
,
Klein
R
,
Couper
DJ
,
Cooper
LS
,
Shahar
E
,
Hubbard
LD
,
Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study
.
Lancet
.
2001
;
358
(
9288
):
1134
40
. .
13.
Ikram
MK
,
de Jong
FJ
,
Bos
MJ
,
Vingerling
JR
,
Hofman
A
,
Koudstaal
PJ
,
Retinal vessel diameters and risk of stroke: the Rotterdam Study
.
Neurology
.
2006
;
66
(
9
):
1339
43
. .
14.
Boillot
A
,
Zoungas
S
,
Mitchell
P
,
Klein
R
,
Klein
B
,
Ikram
MK
,
Obesity and the microvasculature: a systematic review and meta-analysis
.
PLoS One
.
2013
;
8
(
2
):
e52708
. .
15.
Wang
JJ
,
Taylor
B
,
Wong
TY
,
Chua
B
,
Rochtchina
E
,
Klein
R
,
Retinal vessel diameters and obesity: a population-based study in older persons
.
Obesity
.
2006
;
14
(
2
):
206
14
. .
16.
Wong
TY
,
Duncan
BB
,
Golden
SH
,
Klein
R
,
Couper
DJ
,
Klein
BEK
,
Associations between the metabolic syndrome and retinal microvascular signs: the Atherosclerosis Risk in Communities Study
.
Invest Ophthalmol Vis Sci
.
2004
;
45
(
9
):
2949
54
. .
17.
Bizzarri
C
,
Pedicelli
S
,
Romanzo
A
,
Bocchini
S
,
Bottaro
G
,
Cianfarani
S
,
The impact of IGF-I, puberty and obesity on early retinopathy in children: a cross-sectional study
.
Ital J Pediatr
.
2019
;
45
(
1
):
52
. .
18.
Gong
W
,
Hu
Y
,
Niu
Y
,
Wang
D
,
Wang
Y
,
Li
Y
,
Effects of longitudinal body mass index variability on microvasculature over 5 years in adult Chinese
.
Obesity
.
2016
;
24
(
3
):
743
9
. .
19.
Chonsui
M
,
Le Goff
M
,
Korobelnik
JF
,
Rougier
MB
.
Quantitative analysis of radial peripapillary capillary network in patients with papilledema compared to healthy subjects using optical coherence tomography angiography
.
J Neuroophthalmol
.
2022
;
42
(
1
):
e109
15
.
20.
Battu
R
,
Dabir
S
,
Khanna
A
,
Kumar
AK
,
Sinha Roy
A
.
Adaptive optics imaging of the retina
.
Indian J Ophthalmol
.
2014
;
62
(
1
):
60
5
. .
21.
Saleh
M
.
[Adaptive optics for ophthalmology]
.
J Fr Ophtalmol
.
2016
;
39
(
4
):
380
6
. .
22.
Rosenbaum
D
,
Koch
E
,
Girerd
X
,
Rossant
F
,
Pâques
M
.
[Imaging of retinal arteries with adaptative optics, feasibility and reproducibility]
.
Ann Cardiol Angeiol
.
2013
;
62
(
3
):
184
8
. .
23.
Kim
K
,
Kim
ES
,
Yu
SY
.
Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes
.
Br J Ophthalmol
.
2018
;
102
(
9
):
1226
31
. .
24.
Conrath
J
,
Giorgi
R
,
Raccah
D
,
Ridings
B
.
Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment
.
Eye
.
2005
;
19
(
3
):
322
6
. .
25.
Rifai
OM
,
Mcgrory
S
,
Robbins
CB
,
Grewal
DS
,
Liu
A
,
Fekrat
S
,
The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review
.
Alzheimer Dement
.
2021
;
13
(
1
):
e12149
. .
26.
Katsimpris
A
,
Karamaounas
A
,
Sideri
AM
,
Katsimpris
J
,
Georgalas
I
,
Petrou
P
.
Optical coherence tomography angiography in Alzheimer’s disease: a systematic review and meta-analysis
.
Eye
.
2022
;
36
(
7
):
1419
26
. .
27.
Icel
E
,
Ucak
T
,
Yılmaz
H
,
Taşli
G
,
Uğurlu
A
,
Turk
A
.
Optical coherence tomography angiography findings in obese women
.
Turk Klin J Ophthalmol
.
2020
:
29
.
28.
Icel
E
,
Akbas
N
,
Murat Akbas
E
,
Icel
A
,
Kemal Arslan
Y
.
The effects of body mass index and atherogenic index on retinal microvascular structure in obese patients
.
2021
. Unpublished. Available from: http://repository.uki.ac.id/3331/1/THEEFFECTSOFBODYMASSINDEXANDATHEROGENICINDEXONRETINALMICROVASCULARSTRUCTUREINOBESEPATIENTS_Review%20Jurnal.pdf.
29.
Agarwal
A
,
Saini
A
,
Mahajan
S
,
Agrawal
R
,
Cheung
CY
,
Rastogi
A
,
Effect of weight loss on the retinochoroidal structural alterations among patients with exogenous obesity
.
PLoS One
.
2020
;
15
(
7
):
e0235926
. .
30.
Laiginhas
R
,
Guimarães
M
,
Nora
M
,
Chibante
J
,
Falcão
M
.
Gastric bypass improves microvascular perfusion in patients with obesity
.
Obes Surg
.
2021
;
31
(
5
):
2080
6
. .
31.
ElShazly
M
,
Salama
M
,
Elessawy
K
.
Changes in the macular vascular density after bariatric surgery measured by optical coherence tomography angiography
.
Clin Ophthalmol
.
2021
;
15
:
3131
7
. .
32.
Savastano
MC
,
Lumbroso
B
,
Rispoli
M
.
Vivo characterization of retinal vascularization morphology using optical coherence tomography angiography
.
Retina
.
2015
;
35
(
11
):
2196
203
. .
33.
Casalino
G
,
Coppola
M
,
Earley
O
,
Contieri
F
,
Bandello
F
,
Chakravarthy
U
.
Paracentral acute middle maculopathy as a cause of unexplained visual loss in central retinal vein occlusion
.
Saudi J Ophthalmol
.
2019 Apr–Jun
;
33
(
2
):
168
71
. .
34.
Simonett
JM
,
Scarinci
F
,
Picconi
F
,
Giorno
P
,
De Geronimo
D
,
Di Renzo
A
,
Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus
.
Acta Ophthalmol
.
2017
;
95
(
8
):
e751
5
. .
35.
Freiberg
FJ
,
Pfau
M
,
Wons
J
,
Wirth
MA
,
Becker
MD
,
Michels
S
.
Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy
.
Graefes Arch Clin Exp Ophthalmol
.
2016
;
254
(
6
):
1051
8
. .
36.
Markey
KA
,
Mollan
SP
,
Jensen
RH
,
Sinclair
AJ
.
Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions
.
Lancet Neurol
.
2016
;
15
(
1
):
78
91
. .
37.
Cheung
N
,
Wong
TY
.
Obesity and eye diseases
.
Surv Ophthalmol
.
April 2007
;
52
(
2
):
180
95
. .
38.
Teberik
K
,
Eski
MT
,
Doğan
S
,
Pehlivan
M
,
Kaya
M
.
Ocular abnormalities in morbid obesity
.
Arq Bras Oftalmol
.
2019 Jan–Feb
;
82
(
1
):
6
11
. .
39.
Baran
RT
,
Baran
SO
,
Toraman
NF
,
Filiz
S
,
Demirbilek
H
.
Evaluation of intraocular pressure and retinal nerve fiber layer, retinal ganglion cell, central macular thickness, and choroidal thickness using optical coherence tomography in obese children and healthy controls
.
Niger J Clin Pract
.
019
;
22
(
4
):
539
45
. .
40.
Dogan
B
,
Kazim Erol
M
,
Dogan
U
,
Habibi
M
,
Bulbuller
N
,
Turgut Coban
D
,
The retinal nerve fiber layer, choroidal thickness, and central macular thickness in morbid obesity: an evaluation using spectral-domain optical coherence tomography
.
Eur Rev Med Pharmacol Sci
.
2016
;
20
(
5
):
886
91
.
41.
Karti
O
,
Nalbantoglu
O
,
Abali
S
,
Tunc
S
,
Ozkan
B
.
The assessment of peripapillary retinal nerve fiber layer and macular ganglion cell layer changes in obese children: a cross-sectional study using optical coherence tomography
.
Int Ophthalmol
.
2017
;
37
(
4
):
1031
8
. .
42.
Kim
KE
,
Kim
MJ
,
Park
KH
,
Jeoung
JW
,
Kim
SH
,
Kim
CY
,
Prevalence, awareness, and risk factors of primary open-angle glaucoma: Korea National Health and Nutrition Examination Survey 2008–2011
.
Ophthalmology
.
2016
;
123
(
3
):
532
41
. .
43.
Newman-Casey
PA
,
Talwar
N
,
Nan
B
,
Musch
DC
,
Stein
JD
.
The relationship between components of metabolic syndrome and open-angle glaucoma
.
Ophthalmology
.
2011
;
118
(
7
):
1318
26
. .
44.
Mase
T
,
Ishibazawa
A
,
Nagaoka
T
,
Yokota
H
,
Yoshida
A
.
Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography
.
Invest Ophthalmol Vis Sci
.
2016
;
57
(
9
):
OCT504
10
. .
45.
Ghasemi Falavarjani
K
,
Tian
JJ
,
Akil
H
,
Garcia
GA
,
Sadda
SR
,
Sadun
AA
.
Swept-source optical coherence tomography angiography of the optic disk in optic neuropathy
.
Retina
.
2016
;
36
(
Suppl 1
):
S168
77
. .
46.
Jia
Y
,
Wei
E
,
Wang
X
,
Zhang
X
,
Morrison
JC
,
Parikh
M
,
Optical coherence tomography angiography of optic disc perfusion in glaucoma
.
Ophthalmology
.
2014
;
121
(
7
):
1322
32
. .
47.
Liu
L
,
Jia
Y
,
Takusagawa
HL
,
Pechauer
AD
,
Edmunds
B
,
Lombardi
L
,
Optical coherence tomography angiography of the peripapillary retina in glaucoma
.
JAMA Ophthalmol
.
2015
;
133
(
9
):
1045
52
. .
48.
Houben
AJHM
,
Martens
RJH
,
Stehouwer
CDA
.
Assessing microvascular function in humans from a chronic disease perspective
.
J Am Soc Nephrol
.
2017
;
28
(
12
):
3461
72
. .
49.
De Ciuceis
C
,
Agabiti Rosei
C
,
Caletti
S
,
Trapletti
V
,
Coschignano
MA
,
Tiberio
GAM
,
Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations
.
J Hypertens
.
2018
;
36
(
5
):
1154
63
. .
50.
Rosenbaum
D
,
Mattina
A
,
Koch
E
,
Rossant
F
,
Gallo
A
,
Kachenoura
N
,
Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics
.
J Hypertens
.
2016
;
34
(
6
):
1115
22
. .
51.
Arichika
S
,
Uji
A
,
Ooto
S
,
Muraoka
Y
,
Yoshimura
N
.
Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy
.
Sci Rep
.
2015
;
5
(
1
):
12283
. .
52.
Grassi
G
,
Seravalle
G
,
Scopelliti
F
,
Dell’Oro
R
,
Fattori
L
,
Quarti-Trevano
F
,
Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity
.
Obesity
.
2010
;
18
(
1
):
92
8
. .
53.
Laigaard
PP
,
Larsen
M
,
Hansen
MH
,
Jeppesen
J
,
Olsen
EM
,
Skovgaard
AM
,
Retinal arteriolar wall-to-lumen ratios at 16–17 years in the Copenhagen Child Cohort 2000 Study
.
J Hypertens
.
2020
;
38
(
4
):
731
6
. .
54.
Zaleska-Żmijewska
A
,
Wawrzyniak
Z
,
Kupis
M
,
Szaflik
JP
.
The relation between body mass index and retinal photoreceptor morphology and microvascular changes measured with adaptive optics (rtx1) high-resolution imaging
.
J Ophthalmol
.
2021
;
2021
:
e6642059
. .
55.
Baleanu
D
,
Ritt
M
,
Harazny
J
,
Heckmann
J
,
Schmieder
RE
,
Michelson
G
.
Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage
.
Invest Ophthalmol Vis Sci
.
2009
;
50
(
9
):
4351
9
. .
56.
Bastard
J-P
,
Maachi
M
,
Lagathu
C
,
Kim
MJ
,
Caron
M
,
Vidal
H
,
Recent advances in the relationship between obesity, inflammation, and insulin resistance
.
Eur Cytokine Netw
.
2006
;
17
(
1
):
4
12
.
57.
Matsuda
M
,
Shimomura
I
.
Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer
.
Obes Res Clin Pract
.
2013 Sep–Oct
;
7
(
5
):
e330
41
. .
58.
Tuzcu
M
,
Orhan
C
,
Muz
OE
,
Sahin
N
,
Juturu
V
,
Sahin
K
.
Lutein and zeaxanthin isomers modulates lipid metabolism and the inflammatory state of retina in obesity-induced high-fat diet rodent model
.
BMC Ophthalmol
.
2017
;
17
(
1
):
129
. .
59.
Dátilo
MN
,
Sant’Ana
MR
,
Formigari
GP
,
Rodrigues
PB
,
de Moura
LP
,
da Silva
ASR
,
Omega-3 from flaxseed oil protects obese mice against diabetic retinopathy through GPR120 receptor
.
Sci Rep
.
2018
;
8
:
14318
. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156233/.
60.
Yilmaz
I
,
Ozkaya
A
,
Kocamaz
M
,
Ahmet
S
,
Ozkaya
HM
,
Yasa
D
,
Correlation of choroidal thickness and body mass index
.
Retina
.
2015
;
35
(
10
):
2085
90
. .
61.
Bulus
AD
,
Can
ME
,
Baytaroglu
A
,
Can
GD
,
Cakmak
HB
,
Andiran
N
.
Choroidal thickness in childhood obesity
.
Ophthalmic Surg Lasers Imaging Retina
.
2017
;
48
(
1
):
10
7
. .
62.
Yumusak
E
,
Ornek
K
,
Durmaz
SA
,
Cifci
A
,
Guler
HA
,
Bacanli
Z
.
Choroidal thickness in obese women
.
BMC Ophthalmol
.
2016
;
16
(
1
):
48
. .
63.
Usui
S
,
Ikuno
Y
,
Akiba
M
,
Maruko
I
,
Sekiryu
T
,
Nishida
K
,
Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects
.
Invest Ophthalmol Vis Sci
.
2012
;
53
(
4
):
2300
7
. .
64.
Flores-Moreno
I
,
Lugo
F
,
Duker
JS
,
Ruiz-Moreno
JM
.
The relationship between axial length and choroidal thickness in eyes with high myopia
.
Am J Ophthalmol
.
2013
;
155
(
2
):
314
9.e1
. .e1
65.
Fujiwara
T
,
Imamura
Y
,
Margolis
R
,
Slakter
JS
,
Spaide
RF
.
Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes
.
Am J Ophthalmol
.
2009
;
148
(
3
):
445
50
. .
66.
Enquete-epidemiologique-sur-le-suproids-et-lobesite-Odoxa-x-Obepi.pdf [Internet]
;
2021
. [cité 27 déc 2021]. Disponible sur: https://www.sraenutrition.fr/wp-content/uploads/2021/08/Enquete-epidemiologique-sur-le-suproids-et-lobesite-Odoxa-x-Obepi.pdf.
67.
Sivaprasad
S
,
Vasconcelos
JC
,
Prevost
AT
,
Holmes
H
,
Hykin
P
,
George
S
,
Clinical efficacy and safety of a light mask for prevention of dark adaptation in treating and preventing progression of early diabetic macular oedema at 24 months (CLEOPATRA): a multicentre, phase 3, randomised controlled trial
.
Lancet Diabet Endocrinol
.
2018
;
6
(
5
):
382
91
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.