The introduction of spectral-domain optical coherence tomography (SD-OCT) has improved the clinical value for assessment of the eyes with macular disease. This article reviews the advances of SD-OCT for the diagnostic of various macular diseases. These include vitreomacular traction syndrome, cystoid macular edema/diabetic macular edema, epiretinal membranes, full-thickness macular holes, lamellar holes, pseudoholes, microholes, and schisis from myopia. Besides offering new insights into the pathogenesis of macular abnormalities, SD-OCT is a valuable tool for monitoring macular disease.

1.
Fercher AF, Mengedoht K, Werner W: Eye-length measurement by interferometry with partially coherent light. Opt Lett 1988;13:186–188.
2.
Hee MR, Puliafito C, Carlton W, Duker J, Reichel E, Rutledge B, Schuman J, Swanson E, Fujimoto J: Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 1995;113:1019–1029.
3.
Hee MR, Puliafito Ca, Wong C, Duker JS, Reichel E, Schuman JS, Swanson EA, Fujimoto JG: Optical coherence tomography of macular holes. Ophthalmology 1995;102:748–756.
4.
Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG: Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 1995;113:1019–1029.
5.
Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG: Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.
6.
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al: Optical coherence tomography. Science 1991;254:1178–1181.
7.
Barbazetto I, Burdan A, Bressler NM, Bressler SB, Haynes L, Kapetanios AD, Lukas J, Olsen K, Potter M, Reaves A, Rosenfeld P, Schachat AP, Strong HA, Wenkenstern A: Photodynamic therapy of subfoveal choroidal neovascularization with verteporfin: fluorescein angiographic guidelines for evaluation and treatment – TAP and VIP report No 2. Arch Ophthalmol 2003;121:1253–1268.
8.
Hee MR: Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol 2005;139:154–155.
9.
Massin P, Erginay A, Haouchine B, Mehidi AB, Paques M, Gaudric A: Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol 2002;12:102–108.
10.
Arvas S, Akar S, Yolar M, Yetik H, Kizilkaya M, Ozkan S: Optical coherence tomography and angiography in patients with angioid streaks. Eur J Ophthalmol 2002;12:473–481.
11.
Brinkmann CK, Wolf S, Wolf-Schnurrbusch UE: Multimodal imaging in macular diagnostics: combined OCT-SLO improves therapeutical monitoring. Graefes Arch Clin Exp Ophthalmol 2008;246:9–16.
12.
Brown JC, Solomon SD, Bressler SB, Schachat AP, DiBernardo C, Bressler NM: Detection of diabetic foveal edema: contact lens biomicroscopy compared with optical coherence tomography. Arch Ophthalmol 2004;122:330–335.
13.
Chang LK, Koizumi H, Spaide RF: Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes. Retina 2008;28:969–975.
14.
Chang LK, Fine HF, Spaide RF, Koizumi H, Grossniklaus HE: Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol 2008;146:121–127.
15.
de Bruin DM, Burnes D, Loewenstein J, Chen Y, Chang S, Chen T, Esmaili D, de Boer JF: In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1,050 nm. Invest Ophthalmol Vis Sci 2008;49:4545–4552.
16.
Fleckenstein M, Charbel Issa P, Helb HM, Schmitz-Valckenberg S, Finger RP, Scholl HP, Loeffler KU, Holz FG: High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 2008;49:4137–4144.
17.
Frank RN, Schulz L, Abe K, Iezzi R: Temporal variation in diabetic macular edema measured by optical coherence tomography. Ophthalmology 2004;111:211–217.
18.
Kim BY, Smith SD, Kaiser PK: Optical coherence tomographic patterns of diabetic macular edema. Am J Ophthalmol 2006;142:405–412.
19.
Ko TH, Witkin AJ, Fujimoto JG, Chan A, Rogers AH, Baumal CR, Schuman JS, Drexler W, Reichel E, Duker JS: Ultrahigh-resolution optical coherence tomography of surgically closed macular holes. Arch Ophthalmol 2006;124:827–836.
20.
Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM Jr, Yannuzzi LA: Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol 2008;145:509–517.
21.
Massin P, Duguid G, Erginay A, Haouchine B, Gaudric A: Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy. Am J Ophthalmol 2003;135:169–177.
22.
Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S: Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 2008;49:3095–3099.
23.
Yi K, Mujat M, Park BH, Sun W, Miller JW, Seddon JM, Young LH, de Boer JF, Chen TC: Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age related macular degeneration. Br J Ophthalmol 2008; 93:176–181.
24.
Drexler W, Fujimoto JG: State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008;27:45–88.
25.
Thomas D, Duguid G: Optical coherence tomography – A review of the principles and contemporary uses in retinal investigation. Eye 2004;18:561–570.
26.
Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA: Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 2007;12:051403.
27.
Jaffe GJ, Caprioli J: Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004;137:156–169.
28.
Podoleanu AG, Rosen RB: Combinations of techniques in imaging the retina with high resolution. Prog Retin Eye Res 2008;27:464–499.
29.
Massin P, Girach A, Erginay A, Gaudric A: Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand 2006;84:466–474.
30.
Virgili G, Menchini F, Dimastrogiovanni AF, Rapizzi E, Menchini U, Bandello F, Chiodini RG: Optical coherence tomography versus stereoscopic fundus photography or biomicroscopy for diagnosing diabetic macular edema: a systematic review. Invest Ophthalmol Vis Sci 2007;48:4963–4973.
31.
Mirza RG, Johnson MW, Jampol LM: Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol 2007;52:397–421.
32.
Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF: Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 2000;25:820–822.
33.
Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF: Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett 2002;27:1415–1417.
34.
Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF: Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003;121:695–706.
35.
Puvanathasan P, Forbes P, Ren Z, Malchow D, Boyd S, Bizheva K: High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1,060 nm wavelength region. Opt Lett 2008;33:2479–2481.
36.
Makita S, Fabritius T, Yasuno Y: Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt Express 2008;16:8406–8420.
37.
Huber R, Adler DC, Srinivasan VJ, Fujimoto JG: Fourier domain mode locking at 1,050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 2007;32:2049–2051.
38.
Legarreta JE, Gregori G, Knighton RW, Punjabi OS, Lalwani GA, Puliafito CA: Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes. Am J Ophthalmol 2008;145:1023–1030.
39.
Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA: Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 2008;39:S43–S49.
40.
Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA: In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2007;48:1808–1814.
41.
Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS: Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734–1746.
42.
Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S: Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2009;50:3432–3437.
43.
Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DS: Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2008;49:4893–4897.
44.
Sayanagi K, Sharma S, Yamamoto T, Kaiser PK: Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Ophthalmology 2009;116:947–955.
45.
Sayanagi K, Sharma S, Kaiser PK: Comparison of retinal thickness measurements between three-dimensional and radial scans on spectral-domain optical coherence tomography. Am J Ophthalmol 2009;148:431–438.
46.
Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S: Macular thickness measurements in normal eyes with time-domain and Fourier-domain optical coherence tomography. Retina 2009;29:980–987.
47.
Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS: Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology 2009;116:1960–1970.
48.
Han IC, Jaffe GJ: Comparison of spectral- and time-domain optical coherence tomography for retinal thickness measurements in healthy and diseased eyes. Am J Ophthalmol 2009;147:847–858, 858.e.1.
49.
Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M: Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye 2009, E-pub ahead of print.
50.
Bruce A, Pacey IE, Dharni P, Scally AJ, Barrett BT: Repeatability and reproducibility of macular thickness measurements using Fourier domain optical coherence tomography. Open Ophthalmol J 2009;3:10–14.
51.
Balasubramanian M, Bowd C, Vizzeri G, Weinreb RN, Zangwill LM: Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography. Opt Express 2009;17:4019–4036.
52.
Prakash G, Agarwal A, Jacob S, Kumar DA, Banerjee R: Comparison of Fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol 2009;148:282–290.
53.
Yi K, Mujat M, Park BH, Sun W, Miller JW, Seddon JM, Young LH, de Boer JF, Chen TC: Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration. Br J Ophthalmol 2009;93:176–181.
54.
Helb HM, Issa PC, Fleckenstein M, Schmitz-Valckenberg S, Scholl HP, Meyer CH, Eter N, Holz FG: Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmol 2009, E-pub ahead of print.
55.
Cukras C, Wang YD, Meyerle CB, Forooghian F, Chew EY, Wong WT: Optical coherence tomography-based decision making in exudative age-related macular degeneration: comparison of time- vs spectral-domain devices. Eye 2009, E-pub ahead of print.
56.
Menke MN, Dabov S, Sturm V: Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography. Br J Ophthalmol 2008;92:1492–1497.
57.
Khanifar AA, Koreishi AF, Izatt JA, Toth CA: Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 2008;115:1883–1890.
58.
Yeung L, Lima VC, Garcia P, Landa G, Rosen RB: Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology 2009;116:1158–1167.
59.
Koleva-Georgieva D, Sivkova N: Assessment of serous macular detachment in eyes with diabetic macular edema by use of spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2009;247:1461–1469.
60.
Forooghian F, Cukras C, Meyerle CB, Chew EY, Wong WT: Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci 2008;49:4290–4296.
61.
Kay CN, Gendy MG, Lujan BJ, Punjabi OS, Gregori G, Flynn HW Jr: Composite spectral domain optical coherence tomography images of diabetic tractional retinal detachment. Ophthalmic Surg Lasers Imaging 2008;39:S99–S103.
62.
Punjabi OS, Flynn HW Jr, Knighton RW, Gregori G, Couvillion SS, Lalwani GL, Puliafito CA: Spectral domain optical coherence tomography for proliferative diabetic retinopathy with subhyaloid hemorrhage. Ophthalmic Surg Lasers Imaging 2008;39:494–496.
63.
Roesel M, Henschel A, Heinz C, Dietzel M, Spital G, Heiligenhaus A: Fundus autofluorescence and spectral domain optical coherence tomography in uveitic macular edema. Graefes Arch Clin Exp Ophthalmol 2009;247:1685–1689.
64.
Roesel M, Henschel A, Heinz C, Spital G, Heiligenhaus A: Time-domain and spectral-domain optical coherence tomography in uveitic macular edema. Am J Ophthalmol 2008;146:626–627; author reply 627–628.
65.
Falkner-Radler CI, Glittenberg C, Binder S: Spectral domain high-definition optical coherence tomography in patients undergoing epiretinal membrane surgery. Ophthalmic Surg Lasers Imaging 2009;40:270–276.
66.
Scholda C, Wirtitsch M, Hermann B, Unterhuber A, Ergun E, Sattmann H, Ko TH, Fujimoto JG, Fercher AF, Stur M, Schmidt-Erfurth U, Drexler W: Ultrahigh resolution optical coherence tomography of macular holes. Retina 2006;26:1034–1041.
67.
Konidaris V, Androudi S, Brazitikos P: Myopic traction maculopathy: study with spectral domain optical coherence tomography and review of the literature. Hippokratia 2009;13:110–113.
68.
Lalwani GA, Punjabi OS, Flynn HW Jr, Knighton RW, Puliafito CA: Documentation of optic nerve pit with macular schisis-like cavity by spectral domain OCT. Ophthalmic Surg Lasers Imaging 2007;38:262–264.
69.
Gregori NZ, Berrocal AM, Gregori G, Murray TG, Knighton RW, Flynn HW Jr, Dubovy S, Puliafito CA, Rosenfeld PJ: Macular spectral-domain optical coherence tomography in patients with X linked retinoschisis. Br J Ophthalmol 2009;93:373–378.
70.
Gerth C, Zawadzki RJ, Werner JS, Heon E: Retinal morphological changes of patients with X-linked retinoschisis evaluated by Fourier-domain optical coherence tomography. Arch Ophthalmol 2008;126:807–811.
71.
Fujimoto H, Gomi F, Wakabayashi T, Sawa M, Tsujikawa M, Tano Y: Morphologic changes in acute central serous chorioretinopathy evaluated by Fourier-domain optical coherence tomography. Ophthalmology 2008;115:1494–1500.
72.
Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil-Flamer JH, Huang D: A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. Am J Ophthalmol 2008;146:417–426.
73.
Maruko I, Iida T, Sekiryu T, Fujiwara T: Early morphological changes and functional abnormalities in group 2a idiopathic juxtafoveolar retinal telangiectasis using spectral domain optical coherence tomography and microperimetry. Br J Ophthalmol 2008;92:1488–1491.
74.
Kaluzny JJ, Wojtkowski M, Sikorski BL, Szkulmowski M, Szkulmowska A, Bajraszewski T, Fujimoto JG, Duker JS, Schuman JS, Kowalczyk A: Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 2009;40:102–108.
75.
Lujan BJ, Rosenfeld PJ, Gregori G, Wang F, Knighton RW, Feuer WJ, Puliafito CA: Spectral domain optical coherence tomographic imaging of geographic atrophy. Ophthalmic Surg Lasers Imaging 2009;40:96–101.
76.
Bearelly S, Chau FY, Koreishi A, Stinnett SS, Izatt JA, Toth CA: Spectral domain optical coherence tomography imaging of geographic atrophy margins. Ophthalmology 2009;116:1762–1769.
77.
Brar M, Kozak I, Cheng L, Bartsch DU, Yuson R, Nigam N, Oster SF, Mojana F, Freeman WR: Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy. Am J Ophthalmol 2009;148:439–444.
78.
Verma A, Rani PK, Raman R, Pal SS, Laxmi G, Gupta M, Sahu C, Vaitheeswaran K, Sharma T: Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye 2009;23:1824–1830.
79.
Yamamoto S, Yamamoto T, Hayashi M, Takeuchi S: Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms. Graefes Arch Clin Exp Ophthalmol 2001;239:96–101.
80.
Otani T, Kishi S, Maruyama Y: Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 1999;127:688–693.
81.
Einbock W, Berger L, Wolf-Schnurrbusch U, Fleischhauer J, Wolf S: Predictive factors for visual acuity of patients with diabetic macular edema interpreted form the spectralis HRA+OCT (Heidelberg Engineering). Invest Ophthalmol Vis Sci 2008;49:3473.
82.
Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, Yamanari M, Yatagai T, Kita M, Yoshimura N: Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology 2007;114:763–773.
83.
Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG: High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2006;113:2054.
84.
Inoue M, Watanabe Y, Arakawa A, Sato S, Kobayashi S, Kadonosono K: Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol 2009;247:325–330.
85.
Querques G, Regenbogen M, Soubrane G, Souied EH: High-resolution spectral domain optical coherence tomography findings in multifocal vitelliform macular dystrophy. Surv Ophthalmol 2009;54:311–316.
86.
Ohta K, Sato A, Fukui E: Spectral domain optical coherence tomographic findings at convalescent stage of acute zonal occult outer retinopathy. Clin Ophthalmol 2009;3:423–428.
87.
Koizumi H, Maguire JI, Spaide RF: Spectral domain optical coherence tomographic findings of occult macular dystrophy. Ophthalmic Surg Lasers Imaging 2009;40:174–176.
88.
Krivosic V, Tadayoni R, Massin P, Erginay A, Gaudric A: Spectral domain optical coherence tomography in type 2 idiopathic perifoveal telangiectasia. Ophthalmic Surg Lasers Imaging 2009;40:379–384.
89.
Gupta V, Gupta A, Gupta P, Sharma A: Spectral-domain cirrus optical coherence tomography of choroidal striations seen in the acute stage of Vogt-Koyanagi-Harada disease. Am J Ophthalmol 2009;147:148–153 e142.
90.
Kellner S, Weinitz S, Kellner U: Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol 2009;93:1444–1447.
91.
Chong GT, Farsiu S, Freedman SF, Sarin N, Koreishi AF, Izatt JA, Toth CA: Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol 2009;127:37–44.
92.
Seeliger MW, Beck SC, Pereyra-Munoz N, Dangel S, Tsai JY, Luhmann UF, van de Pavert SA, Wijnholds J, Samardzija M, Wenzel A, Zrenner E, Narfstrom K, Fahl E, Tanimoto N, Acar N, Tonagel F: In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 2005;45:3512–3519.
93.
Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR: Retinal degeneration mutants in the mouse. Vision Res 2002;42:517–525.
94.
Buttery RG, Hinrichsen CF, Weller WL, Haight JR: How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vision Res 1991;31:169–187.
95.
Hanstede JG, Gerrits PO: The effects of embedding in water-soluble plastics on the final dimensions of liver sections. J Microsc 1983;131:79–86.
96.
Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, Grimm C, Wenzel A, Reme CE, van de Pavert SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW: Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 2009;4:e7507.
97.
Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, Humphries P, Redmond TM, Seeliger M, Fischer MD: Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 2009;50:5888–5895.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.