Introduction: Managing nutritional deficiencies is an essential component in the treatment of severe obesity. Vitamin D deficiency is often reported in investigations in severely obese cohorts. However, no prior study has summarized findings on this topic. Consequently, the aim of this systematic review and meta-analysis was to investigate the 25-hydroxyvitamin D [25(OH)D] status in individuals with severe obesity in different regions worldwide. We also evaluated levels of calcium, parathyroid hormone (PTH), and magnesium as secondary outcome measures. Methods: We searched Medline, PubMed, Scopus, the Cochrane Library, and EMBASE for relevant observational studies published in English from 2009 to October 2021. The heterogeneity index among the studies was determined using the Cochran (Q) and I2 tests. Based on the heterogeneity results, the random-effect model was applied to estimate the prevalence of vitamin D deficiency. Results: We identified 109 eligible observational studies. Overall, 59.44% of patients had vitamin D deficiency [25(OH)D <20 ng/mL], whereas 26.95% had vitamin D insufficiency [25(OH)D 20–30 ng/mL]. Moreover, the mean 25(OH)D level was 18.65 ng/mL in 96 studies. The pooled mean estimate of the serum calcium, PTH, and magnesium was 9.26 mg/dL (95% confidence interval [CI]: 9.19–9.32, I2 = 99.7%, p < 0.001), 59.24 pg/mL (95% CI: 54.98, 63.51, I2 = 99.7%, p < 0.001), and 0.91 mg/dL (95% CI: 0.84, 0.98, I2 = 100.0%, p < 0.001), respectively. The results of the subgroup analysis indicated that the mean estimates of 25(OH)D were highest in North America (21.71 ng/mL [19.69, 23.74], [I2 = 97.2%, p < 0.001]) and lowest in Southeast Asia (14.93 ng/mL [14.54, 15.33], [I2 = 0.0%, p = 0.778]). Conclusion: The results obtained showed a significant prevalence of vitamin D deficiency among severely obese individuals in various geographical regions, whereas the highest and lowest mean estimates were reported for North America and Southeast Asia, respectively.

Morbid obesity, characterized by body mass index (BMI) higher than 40 kg/m, showed an increased prevalence in the last 30 years [1]. It is associated with significant severity and mortality including enhanced morbidity from cardiovascular, cerebrovascular, hepatobiliary, and colonic diseases [2‒4]. It is well established that despite high-calorie intakes, micronutrient deficiencies are prevalent in severe obesity [5, 6]. Indeed, a high BMI is correlated with nutrient deficiency [7‒11]. Therefore, the management of nutrient deficiencies in severe obesity is an important component for the treatment of this condition, especially since these deficiencies could worsen after the surgeries [12].

Vitamin D deficiency is often reported in severely obese cohorts [13], and its prevalence is further increased in those who are candidates for bariatric surgery [14‒19]. The causes for vitamin D deficiency in this population include a lower sun exposure due to lower outdoor physical activity [6, 20], a reduced dietary intake of vitamin D as well as an impaired liver function which decreases the synthesis of this vitamin [12]. Moreover, vitamin D uptake [21, 22] and vitamin D sequestration by the adipose tissue can be considered another important trigger of vitamin D deficiency in the severely obese cohort [23‒25]. Lower vitamin D levels [12] in severe obesity are frequently concurrent to higher parathyroid hormone (PTH) concentrations which can impair calcium metabolism and lead to declines in bone health and the development of chronic diseases, including diabetes, cardiovascular disease, and hypertension [26‒37].

Various degrees of vitamin D deficiency and high PTH levels in severe obese cohorts are reported in the available literature, which results from various fortification policies, seasonal and geographical differences, assay methods, and ethnicity differences [12]. For instance, some studies reported a vitamin D deficiency prevalence of 50–60% [38, 39], while others showed more than 70% in bariatric surgery candidates [12, 18, 40, 41]. It should be noted that previous studies reported that PTH levels were linked to calcium and magnesium levels [42, 43].

Vitamin D deficiency is the most common cause of secondary hyperparathyroidism that will result in bone resorption and fracture. Moreover, vitamin D deficiency can decelerate chronic disease including metabolic syndrome, type 2 diabetes, hypertension, and hyperlipidemia in patients with severe obesity [44]. Consequently, there is a lack of consensus regarding serum levels of vitamin D, PTH, calcium, and magnesium in this population. It is important to better elucidate vitamin D status in various geographical zones for better management of this deficiency before the surgeries in this high-risk group. Thus, we sought to conduct a systematic review and meta-analysis to assess vitamin D deficiency prevalence as well as serum levels of vitamin D, magnesium, calcium, and PTH in severely obese individuals in different regions worldwide.

This study was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for reporting systematic reviews and meta-analyses [45]. The protocol was previously published in the PROSPERO database (http://www.crd.york.ac.uk/PROSPERO), under registration no. CRD42019139937.

Search Strategy

We searched PubMed, Scopus, EMBASE, ISI Web of Science, and Cochrane databases through October 2021 in the English language to find studies investigating the prevalence of vitamin D status in patients with severe obesity who were candidates for bariatric surgeries. The systematic literature search was based on the following strategy: controlled vocabulary (i.e., MeSH and EMTREE terms) and specific text words. For each database search, adapted combinations of terms and words were applied. For example, in the search on the PubMed database, the following search terms were used: (“vitamin D,” “25-hydroxy vitamin D,” “vitamin D deficiency,” 25(OH) D, “Vitamin D deficiency” OR “Deficiency, Vitamin D” OR “Deficiencies, Vitamin D” OR “Vitamin D Deficiencies”) AND (“morbid obesity” OR “severe obesity” OR “Morbid Obesities” OR “Obesities, Morbid” OR “Obesity, Severe” OR “Obesities, Severe” OR “Severe Obesities” OR “Severe Obesities”). Moreover, bibliographies of all prior reviews and primary studies identified by search strategy were scanned for additional relevant publications. The authors decided which trials to include (authors 1, 2, and 3) in a blinded manner, with discrepancies resolved via discussion.

Inclusion and Exclusion Criteria

Three reviewers independently screened all abstracts and selected articles for the meta-analysis if they met all of the following criteria: prospective or retrospective studies or randomized controlled trials that reported the level of serum vitamin D, calcium, PTH, and magnesium status or prevalence of vitamin D deficiency or insufficiency in individuals with severe obesity (BMI >40 or BMI >35 with at least one comorbidity) preoperatively [46], (2) written in the English language, and (3) reported at least serum vitamin D or calcium or PTH or magnesium or vitamin D deficiency or insufficiency. Only data associated with severe obesity were considered for inclusion in studies that analyzed multiple interventions. The exclusion criteria were (1) the absence of information on serum vitamin D or calcium or PTH or magnesium or prevalence of vitamin D deficiency or insufficiency and (2) studies with case-control design, reviews, comments, case reports, abstracts, and animal studies.

Study Selection

Three authors (N.H., Z.S., and M.A.) independently conducted the study selection process in two phases. The first phase consisted of screening the articles through their titles and abstracts and eliminating studies that did not meet the eligibility criteria. The remaining articles were read in full, and those eligible were selected for review. In the absence of consensus on including a study by the three authors, a fourth author (M.A.) contributed to the final decision-making. The level of disagreement was calculated using a percentage of agreement and reliability, Cohen’s Kappa [47]. Three authors (N.H., Z.S., and M.A.) analyzed the lists of references in the included articles.

Data Collection

Three authors (S.E., R.B., and M.A.) extracted the data, and an additional author (N.H.) performed the cross-checking of all information. The following details were collected from all selected studies: authors, publication year, aim of the study, sample size, age, sex, country of origin, serum vitamin D level, serum calcium level, serum PTH level, serum magnesium level, and their deficiencies.

Statistical Analysis

The statistical analyses were performed using Stata, version 14 (Stata Corp., College Station, TX). We calculated the mean difference with 95% confidence interval (CI) for continuous data for each study. Cochrane Q test and I2 were used to evaluate heterogeneity among the included studies. I2 values greater than 50% represented moderate to high heterogeneity, and p < 0.01 was considered statistically significant. Because of the significant heterogeneity, the pooled weighted mean difference and 95% CI were calculated using the random-effects model (DerSimonian and Laird) [12]. The subgroup analysis was performed to explore possible sources of observed heterogeneity among the included studies. Subgroup analysis was conducted according to the following variables: climate zone (Middle East, North America, South America, Asia, Europe). p values for pooled effect sizes were considered statistically significant at the level of p < 0.05, a priori.

Literature Search

In the initial search, 10,491 articles were found in the selected databases. After exclusion of the duplicates, 1,778 documents underwent assessment via screening of titles and abstracts. Of these, 1,086 articles were determined to be non-relevant, while the remaining 692 articles underwent full-text revision. Following these procedures, 119 documents were determined to be eligible, and another 18 studies were added for consideration after assessment of the article’s references. The evaluation of inclusion/exclusion criteria resulted in the omission of 25 records. Consequently, 109 articles were included in the meta-analysis (Fig. 1).

Fig. 1.

Flowchart of study selection for inclusion trials in the systematic review.

Fig. 1.

Flowchart of study selection for inclusion trials in the systematic review.

Close modal

Study Characteristics

The study design of the included studies was cross-sectional, case-control, cohorts, and interventional, which reported serum 25(OH)D, PTH, calcium, and magnesium levels in patients with severe obesity and bariatric surgery candidates. Included studies were published from 2009 to 2021, consisting of 109 articles on bariatric surgery candidates reporting their pre-operation information. The total number of individuals who underwent meta-analysis from 109 articles was 21,565, which varied from 10 to 2,008. The mean age of the individuals was 41.5 years, varying from 30 to 51 years. Both male and female participants were included in 109 articles, while 13 articles were reported on data related to only females (Table 1).

Table 1.

Characteristics of the included studied evaluating vitamin D status of morbidly obese patients or bariatric surgery candidates

AuthorYearCountrySexAge, yearsBMISample sizeOutcome
Alejo Ramos et al. [482019 Spain M/F 43.07 49.82 321 Vit D, PTH 
Al-Mutawa et al. [492018 Kuwait M/F 35 46.1 1,793 Vit D 
Arias et al. [502019 Argentina M/F 40.25 43.74 169 Vit D 
Asghari et al. [512018 Iran M/F 37.8 37.8 2,008 Ca 
Bandstein et al. [522015 Switzerland M/F 42.8 45.2 210 Vit D 
Beckman et al. [532013 USA 48 48 29 Vit D 
Ben-Porat al. [542017 Israel M/F 39.8 45.2 27 Vit D, PTH 
Bredella et al. [552017 United States M/F 49 43.9 21 Ca, Vit D, PTH 
Caron et al. [562017 Canada M/F 48 48.1 537 Ca, Vit D, PTH 
Carrasco et al. [572014 Chile 33.5 40 43 Vit D, PTH 
Carrasco et al. [582018 USA 35 39.1 58 Ca, Mg, Vit D, PTH 
Casella et al. [592018 Italy M/F 37 44.34 226 Ca, Vit D, PTH 
Chereau et al. [602017 France M/F 46 44.9 48 Vit D 
Cloutier et al. [612018 Canada M/F 40.4 45.9 20 Ca, Vit D, PTH 
Coupaye et al. [622014 France M/F 45 48.5 86 Ca, Mg, Vit D, PTH 
Cuesta et al. [632014 Spain M/F 42.28 44.1 178 Vit D 
Sherf Dagan et al. [642016 Israel M/F 41.9 42.3 100 Vit D 
Aridi et al. [412016 Lebanon M/F 39.7 43.1 257 Vit D 
Dogan et al. [652014 Netherlands 74 44.8 148 Ca, Mg, Vit D, PTH 
Ducloux et al. [662014 France M/F 55.9 32.5 547 Vit D 
Elhag et al. [672018 Qatar M/F 16 46.04 79 Ca, Mg, Vit D, PTH 
Elias et al. [682014 Finland M/F NS 42.65 63 Vit D, PTH 
Flores et al. [692015 Spain M/F 44 46 176 Ca, Vit D, PTH 
Ghiassi et al. [702018 USA M/F 50.8 48.4 96 Ca, Vit D, PTH 
Gillon et al. [712017 Norway M/F 41 45.3 336 Ca, Vit D, PTH 
Guan et al. [722018 China M/F 32 40.11 120 Ca, Mg, Vit D, PTH 
Guglielmi et al. [732018 Italy M/F 40 48.5 42 Ca, Vit D, PTH 
Smelt et al. [742019 Netherlands M/F 45 42.6 100 Ca, Vit D, PTH 
Henfridsson et al. [752019 Sweden M/F 16.5 45.5 85 Ca, Vit D 
Hultin et al. [762018 Sweden M/F 40 54.5 20 Ca, Vit D, PTH 
Johnson et al. [772019 Minnesota M/F 43 45.75 468 Ca, Vit D, PTH 
Karefylakis et al. [782014 Sweden M/F 49 43.4 293 Ca, Vit D, PTH 
Kim et al. [792014 Korea M/F 45.8 32.9 33 Ca, Vit D 
Lanzarini et al. [802015 Spain M/F 45.7 43 164 Vit D, PTH 
Lee et al. [112019 Singapore M/F 40.6 42.4 577 Ca, Vit D, PTH 
Luger et al. [812015 Austria M/F 46 45.4 50 Ca, Vit D, PTH 
Luger et al. [822017 Austria M/F 42.2 43.8 50 Ca, Vit D, PTH 
Luger et al. [832018 Austria M/F 42.2 43.8 50 Ca, Vit D, PTH 
Malek et al. [842019 Iran M/F 37.4 45.7 170 Vit D 
Menegati et al. [852016 Brazil 38.9 52.2 25 Ca, Vit D, PTH 
Mihmanli et al. [862017 Turkey M/F 37 49 119 Ca, Vit D, PTH 
Moore et al. [872014 USA 40.5 46.2 11 Vit D, PTH 
Kosisochi et al. [882014 USA 44.6 46.7 34 Ca, Mg, VitD, PTH 
Entrenas et al. [892017 Spain M/F 41 45.5 46 Vit D 
Ong et al. [902018 Singapore M/F 40.4 40.1 111 Ca, Vit D, PTH 
Pellitero et al. [162017 Spain M/F 49.3 46.7 176 Ca, Vit D, PTH 
Perin et al. [912018 USA M/F 43.1 46.2 47 Vit D 
Marengo et al. [922017 Spain 46.3 42.9 38 Ca, Vit D, PTH 
Ben-Porat et al. [152016 Israel M/F 36.5 42.9 192 Vit D, PTH 
Quraishi et al. [932014 USA M/F 47.2 47.2 385 Ca, Vit D, PTH 
Raoof et al. [942016 Sweden 41.6 44.5 32 Ca, Vit D, PTH 
Rodríguez et al. [952014 Spain M/F 44.18 46.8 110 Vit D, PTH 
Ruiz-Tovar et al. [962013 SPAIN M/F 43.6 51.2 42 Ca, Vit D, PTH 
Rutte et al. [972014 Netherlands M/F 42.7 46.2 200 Ca, Mg, Vit D, PTH 
Sánchez et al. [982016 Chile 36 43.1 103 Ca, Vit D, PTH 
Schaaf et al. [992017 France M/F 41.7 40.9 258 Vit D 
Schafer et al. [1002016 USA M/F 45.4 44.7 33 Vit D, PTH 
Schijns et al. [1012018 Netherlands M/F 46 44.2 569 Vit D 
Schijns wt al. [1022016 Netherlands M/F 47.1 44.7 75 Ca, Mg, Vit D, PTH 
Shahraki et al. [103 Iran M/F 35.6 43.8 33 Vit D 
Sundbom et al. [1042016 Sweden M/F 39.7 42.7 26 Ca, Vit D, PTH 
Svanevik et al. [1052019 Norway M/F 40 53.4 56 Ca, Mg, Vit D, PTH 
Santos et al. [1062018 Brazil 45 31.7 49 Vit D 
Vilarrasa et al. [1072013 Spain 47.7 47.9 33 Ca, Vit D, PTH 
Vinolas et al. [1082019 France M/F 44 45.4 58 Mg, Vit D, PTH 
Vivan et al. [392019 Brazil M/F 44.9 49.3 291 Ca, Vit D, PTH 
Vix et al. [1092014 France M/F 35.1 46 50 Vit D, PTH 
Wei et al. [1102018 Taiwan M/F 34.2 39.4 1,470 Ca, Vit D, PTH 
Worm et al. [1112015 Denmark M/F 43.3 47.2 417 Ca, Mg, Vit D, PTH 
Yu et al. [1122015 USA M/F 47 45 30 Ca, Vit D, PTH 
Zarshenas et al. [1132016 Australia M/F 51.9 42.8 91 Ca, Mg, Vit D, PTH 
Zubiaga Toro et al. [1142014 Spain 47.7 50.4 50 Vit D 
Lancha et al. [1152014 Spain M/F 44 42 40 Ca, Vit D, PTH 
Wolf et al. [1162015 Germany M/F 46 45 38 Ca, Mg, Vit D, PTH 
Peterson et al. [102016 USA M/F 42.6 46.3 58 Vit D 
Topaloglu et al. [1172019 Turkey M/F 38 44.3 199 Vit D 
Blom-Hogestol et al. [1182019 Norway M/F 50.3 35.6 122 Vit D 
Jonas et al. [1192019 Poland M/F 41.49 46.85 55 Vit D 
Loureiro et al. [1202019 Brazil M/F 38.86 42.9 223 Vit D 
Ben-Porat et al. [172019 Israel M/F 36.5 42.4 722 Vit D 
Ministrini et al. [1212020 Italy M/F 43.5 45.5 152 Vit D 
Damms-Machado et al. [142012 Germany M/F 44 51 54 Vit D 
Belfiore et al. [1222015 Italy M/F 34.9 45.9 47 Vit D 
Capoccia et al. [1232012 Italy M/F 43.9 44.4 138 Vit D 
Toh et al. [1242009 Australia M/F 46 51 188 Vit D 
Chan et al. [1252015 USA M/F 48 54.1 134 Vit.D 
Grace et al. [302014 UK M/F 44 52.6 118 Vit.D, Ca 
Salazar et al. [1262020 Portugal M/F 41 43.6 290 Vit.D 
Fox et al. [1272020 UK M/F 48 50 460 Vit.D, Ca, PTH 
Silveira et al. [1282021 Brazil M/F 40 41 150 Vit.D 
Pinto et al. [1292020 Brazil M/F 38.7 42.3 50 Vit.D 
Wang et al. [1302020 China M/F 46 31.37 230 Vit.D, Ca, PTH 
Altaw et al. [1312021 Saudi Arabia M/F 31.3 44.95 143 Vit.D, Ca 
Pellergini et al. [1322021 Italy M/F 43.2 42.8 200 Vit.D, Ca, Mg 
Ballesteros-Pomar et al. [1332016 Spain M/F 43.2 50.1 299 Vit.D 
Van der Beek et al. [1342015 Netherland M/F 47.3 45.3 427 Vit.D 
Duran et al. [1352019 Turkey M/F 41.5 47.9 73 Vit.D 
Pilone et al. [1362020 Italy M/F 34.9 44.3 206 Vit.D 
Kessler et al. [1372020 Israel M/F 46.1 42.0 86 Vit.D 
Almesri et al. [1382020 Bahrain M/F 33.1 46 314 Vit.D 
Lefebvre et al. [92014 France M/F 40.5 43.2 267 Vit.D 
Lin et al. [1392011 USA 33.8 47.5 20 Vit.D 
Moizé et al. [1402013 Spain M/F 45.8 49.5 355 Vit.D 
Nath et al. [1412019 USA M/F 46.7 49.3 271 Vit.D 
Wang et al. [1422016 China M/F 33.3 39.3 211 Vit.D 
Peterson et al. [1432018 USA M/F 43 46.3 265 Vit D 
AuthorYearCountrySexAge, yearsBMISample sizeOutcome
Alejo Ramos et al. [482019 Spain M/F 43.07 49.82 321 Vit D, PTH 
Al-Mutawa et al. [492018 Kuwait M/F 35 46.1 1,793 Vit D 
Arias et al. [502019 Argentina M/F 40.25 43.74 169 Vit D 
Asghari et al. [512018 Iran M/F 37.8 37.8 2,008 Ca 
Bandstein et al. [522015 Switzerland M/F 42.8 45.2 210 Vit D 
Beckman et al. [532013 USA 48 48 29 Vit D 
Ben-Porat al. [542017 Israel M/F 39.8 45.2 27 Vit D, PTH 
Bredella et al. [552017 United States M/F 49 43.9 21 Ca, Vit D, PTH 
Caron et al. [562017 Canada M/F 48 48.1 537 Ca, Vit D, PTH 
Carrasco et al. [572014 Chile 33.5 40 43 Vit D, PTH 
Carrasco et al. [582018 USA 35 39.1 58 Ca, Mg, Vit D, PTH 
Casella et al. [592018 Italy M/F 37 44.34 226 Ca, Vit D, PTH 
Chereau et al. [602017 France M/F 46 44.9 48 Vit D 
Cloutier et al. [612018 Canada M/F 40.4 45.9 20 Ca, Vit D, PTH 
Coupaye et al. [622014 France M/F 45 48.5 86 Ca, Mg, Vit D, PTH 
Cuesta et al. [632014 Spain M/F 42.28 44.1 178 Vit D 
Sherf Dagan et al. [642016 Israel M/F 41.9 42.3 100 Vit D 
Aridi et al. [412016 Lebanon M/F 39.7 43.1 257 Vit D 
Dogan et al. [652014 Netherlands 74 44.8 148 Ca, Mg, Vit D, PTH 
Ducloux et al. [662014 France M/F 55.9 32.5 547 Vit D 
Elhag et al. [672018 Qatar M/F 16 46.04 79 Ca, Mg, Vit D, PTH 
Elias et al. [682014 Finland M/F NS 42.65 63 Vit D, PTH 
Flores et al. [692015 Spain M/F 44 46 176 Ca, Vit D, PTH 
Ghiassi et al. [702018 USA M/F 50.8 48.4 96 Ca, Vit D, PTH 
Gillon et al. [712017 Norway M/F 41 45.3 336 Ca, Vit D, PTH 
Guan et al. [722018 China M/F 32 40.11 120 Ca, Mg, Vit D, PTH 
Guglielmi et al. [732018 Italy M/F 40 48.5 42 Ca, Vit D, PTH 
Smelt et al. [742019 Netherlands M/F 45 42.6 100 Ca, Vit D, PTH 
Henfridsson et al. [752019 Sweden M/F 16.5 45.5 85 Ca, Vit D 
Hultin et al. [762018 Sweden M/F 40 54.5 20 Ca, Vit D, PTH 
Johnson et al. [772019 Minnesota M/F 43 45.75 468 Ca, Vit D, PTH 
Karefylakis et al. [782014 Sweden M/F 49 43.4 293 Ca, Vit D, PTH 
Kim et al. [792014 Korea M/F 45.8 32.9 33 Ca, Vit D 
Lanzarini et al. [802015 Spain M/F 45.7 43 164 Vit D, PTH 
Lee et al. [112019 Singapore M/F 40.6 42.4 577 Ca, Vit D, PTH 
Luger et al. [812015 Austria M/F 46 45.4 50 Ca, Vit D, PTH 
Luger et al. [822017 Austria M/F 42.2 43.8 50 Ca, Vit D, PTH 
Luger et al. [832018 Austria M/F 42.2 43.8 50 Ca, Vit D, PTH 
Malek et al. [842019 Iran M/F 37.4 45.7 170 Vit D 
Menegati et al. [852016 Brazil 38.9 52.2 25 Ca, Vit D, PTH 
Mihmanli et al. [862017 Turkey M/F 37 49 119 Ca, Vit D, PTH 
Moore et al. [872014 USA 40.5 46.2 11 Vit D, PTH 
Kosisochi et al. [882014 USA 44.6 46.7 34 Ca, Mg, VitD, PTH 
Entrenas et al. [892017 Spain M/F 41 45.5 46 Vit D 
Ong et al. [902018 Singapore M/F 40.4 40.1 111 Ca, Vit D, PTH 
Pellitero et al. [162017 Spain M/F 49.3 46.7 176 Ca, Vit D, PTH 
Perin et al. [912018 USA M/F 43.1 46.2 47 Vit D 
Marengo et al. [922017 Spain 46.3 42.9 38 Ca, Vit D, PTH 
Ben-Porat et al. [152016 Israel M/F 36.5 42.9 192 Vit D, PTH 
Quraishi et al. [932014 USA M/F 47.2 47.2 385 Ca, Vit D, PTH 
Raoof et al. [942016 Sweden 41.6 44.5 32 Ca, Vit D, PTH 
Rodríguez et al. [952014 Spain M/F 44.18 46.8 110 Vit D, PTH 
Ruiz-Tovar et al. [962013 SPAIN M/F 43.6 51.2 42 Ca, Vit D, PTH 
Rutte et al. [972014 Netherlands M/F 42.7 46.2 200 Ca, Mg, Vit D, PTH 
Sánchez et al. [982016 Chile 36 43.1 103 Ca, Vit D, PTH 
Schaaf et al. [992017 France M/F 41.7 40.9 258 Vit D 
Schafer et al. [1002016 USA M/F 45.4 44.7 33 Vit D, PTH 
Schijns et al. [1012018 Netherlands M/F 46 44.2 569 Vit D 
Schijns wt al. [1022016 Netherlands M/F 47.1 44.7 75 Ca, Mg, Vit D, PTH 
Shahraki et al. [103 Iran M/F 35.6 43.8 33 Vit D 
Sundbom et al. [1042016 Sweden M/F 39.7 42.7 26 Ca, Vit D, PTH 
Svanevik et al. [1052019 Norway M/F 40 53.4 56 Ca, Mg, Vit D, PTH 
Santos et al. [1062018 Brazil 45 31.7 49 Vit D 
Vilarrasa et al. [1072013 Spain 47.7 47.9 33 Ca, Vit D, PTH 
Vinolas et al. [1082019 France M/F 44 45.4 58 Mg, Vit D, PTH 
Vivan et al. [392019 Brazil M/F 44.9 49.3 291 Ca, Vit D, PTH 
Vix et al. [1092014 France M/F 35.1 46 50 Vit D, PTH 
Wei et al. [1102018 Taiwan M/F 34.2 39.4 1,470 Ca, Vit D, PTH 
Worm et al. [1112015 Denmark M/F 43.3 47.2 417 Ca, Mg, Vit D, PTH 
Yu et al. [1122015 USA M/F 47 45 30 Ca, Vit D, PTH 
Zarshenas et al. [1132016 Australia M/F 51.9 42.8 91 Ca, Mg, Vit D, PTH 
Zubiaga Toro et al. [1142014 Spain 47.7 50.4 50 Vit D 
Lancha et al. [1152014 Spain M/F 44 42 40 Ca, Vit D, PTH 
Wolf et al. [1162015 Germany M/F 46 45 38 Ca, Mg, Vit D, PTH 
Peterson et al. [102016 USA M/F 42.6 46.3 58 Vit D 
Topaloglu et al. [1172019 Turkey M/F 38 44.3 199 Vit D 
Blom-Hogestol et al. [1182019 Norway M/F 50.3 35.6 122 Vit D 
Jonas et al. [1192019 Poland M/F 41.49 46.85 55 Vit D 
Loureiro et al. [1202019 Brazil M/F 38.86 42.9 223 Vit D 
Ben-Porat et al. [172019 Israel M/F 36.5 42.4 722 Vit D 
Ministrini et al. [1212020 Italy M/F 43.5 45.5 152 Vit D 
Damms-Machado et al. [142012 Germany M/F 44 51 54 Vit D 
Belfiore et al. [1222015 Italy M/F 34.9 45.9 47 Vit D 
Capoccia et al. [1232012 Italy M/F 43.9 44.4 138 Vit D 
Toh et al. [1242009 Australia M/F 46 51 188 Vit D 
Chan et al. [1252015 USA M/F 48 54.1 134 Vit.D 
Grace et al. [302014 UK M/F 44 52.6 118 Vit.D, Ca 
Salazar et al. [1262020 Portugal M/F 41 43.6 290 Vit.D 
Fox et al. [1272020 UK M/F 48 50 460 Vit.D, Ca, PTH 
Silveira et al. [1282021 Brazil M/F 40 41 150 Vit.D 
Pinto et al. [1292020 Brazil M/F 38.7 42.3 50 Vit.D 
Wang et al. [1302020 China M/F 46 31.37 230 Vit.D, Ca, PTH 
Altaw et al. [1312021 Saudi Arabia M/F 31.3 44.95 143 Vit.D, Ca 
Pellergini et al. [1322021 Italy M/F 43.2 42.8 200 Vit.D, Ca, Mg 
Ballesteros-Pomar et al. [1332016 Spain M/F 43.2 50.1 299 Vit.D 
Van der Beek et al. [1342015 Netherland M/F 47.3 45.3 427 Vit.D 
Duran et al. [1352019 Turkey M/F 41.5 47.9 73 Vit.D 
Pilone et al. [1362020 Italy M/F 34.9 44.3 206 Vit.D 
Kessler et al. [1372020 Israel M/F 46.1 42.0 86 Vit.D 
Almesri et al. [1382020 Bahrain M/F 33.1 46 314 Vit.D 
Lefebvre et al. [92014 France M/F 40.5 43.2 267 Vit.D 
Lin et al. [1392011 USA 33.8 47.5 20 Vit.D 
Moizé et al. [1402013 Spain M/F 45.8 49.5 355 Vit.D 
Nath et al. [1412019 USA M/F 46.7 49.3 271 Vit.D 
Wang et al. [1422016 China M/F 33.3 39.3 211 Vit.D 
Peterson et al. [1432018 USA M/F 43 46.3 265 Vit D 

LRYGB, laparoscopic Roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy; AGB, adjustable gastric banding; BPD, biliopancreatic diversion.

Meta-Analysis

Vitamin D Status

Vitamin D deficiency and insufficiency were reported in 51 and 28 studies conducted on 12,479 and 3,390 individuals, respectively. The overall pooled prevalence estimates of vitamin D status were as follows: vitamin D deficiency (25(OH)D <20 ng/mL): 59.44% (95% CI: 54.16, 64.73, I2 = 100.0%, p < 0.001), vitamin D insufficiency (25[OH]D 20–30 ng/mL): 26.95% (95% CI: 22.12, 31.78, I2 = 100.0%, p < 0.001), and vitamin D deficiency + insufficiency (25[OH]D <30 ng/mL): 76.24% (95% CI: 66.96, 85.52, I2 = 100.0%, p < 0.001) (Fig. 2a–c, respectively).

Fig. 2.

Forest plots of the pooled prevalence estimate of vitamin D status in morbidly obese patients or bariatric surgery candidates, 25(OH)D <30 ng/mL (a), 25(OH)D <20 ng/mL (b), 25(OH)D 20–30 ng/mL (c).

Fig. 2.

Forest plots of the pooled prevalence estimate of vitamin D status in morbidly obese patients or bariatric surgery candidates, 25(OH)D <30 ng/mL (a), 25(OH)D <20 ng/mL (b), 25(OH)D 20–30 ng/mL (c).

Close modal

A mean serum level of 25(OH)D was reported in 96 studies on 18,998 individuals. The pooled mean estimate of the serum 25(OH)D level was 18.65 ng/mL (95% CI: 17.85, 19.45, I2 = 99.4%, p < 0.001). The lowest and highest serum 25(OH)D levels were reported in Lancha’s (2014) and Damms-Machado’s (2012) reports, respectively (Fig. 3a).

Fig. 3.

Forest plots of the pooled mean estimates of serum 25(OH)D (a), PTH (b), calcium (c), and magnesium (d) in morbidly obese patients or bariatric surgery candidates (in subgroup analysis: 1: Europe, 2: Africa, 3: North America, 4: South America, 5: Australia, 6: Middle East, 7: Southeast Asia).

Fig. 3.

Forest plots of the pooled mean estimates of serum 25(OH)D (a), PTH (b), calcium (c), and magnesium (d) in morbidly obese patients or bariatric surgery candidates (in subgroup analysis: 1: Europe, 2: Africa, 3: North America, 4: South America, 5: Australia, 6: Middle East, 7: Southeast Asia).

Close modal

The mean serum levels of 25(OH)D were also analyzed in different geographical zones. Based on the results of subgroup analysis, the pooled mean estimate of serum 25(OH)D levels in different geographical zones was as follows: Europe – 18.94 ng/mL (17.86, 20.02) (I2 = 99.5%, p < 0.001); Middle East – 15.29 ng/mL (13.93, 16.65) (I2 = 98.3%, p < 0.001); Southeast Asia – 14.93 ng/mL (14.54, 15.33) (I2 = 0.0%, p = 0.778); South America – 21.12 ng/mL (16.07, 26.16) (I2 = 99.1%, p < 0.001); North America – 21.71 ng/mL (19.69, 23.74) (I2 = 97.2%, p < 0.001); Australia – 17.77 ng/mL (14.90, 20.63) (I2 = 79.1%, p = 0.001). The highest and lowest mean estimates were reported for North America and Southeast Asia, respectively (Table 2).

Table 2.

Subgroup analysis of the mean estimates of serum 25(OH)D, PTH, calcium and magnesium in morbidly obese patients or bariatric surgery candidates based on geographical zones

SubgroupIncluded studiesSample sizePooled mean estimate95% confidence intervalHeterogeneity I2, %
Serum 25(OH)D, ng/mL, total 96 18,998 18.65 17.85, 19.45 99.4 
 Europe 50  18.94 17.86, 20.02 99.5 
 North America 16  21.71 19.69, 23.74 97.2 
 South America  21.12 16.07, 26.16 99.1 
 Australia  17.77 14.90, 20.63 79.1 
 Middle East 17  15.29 13.93, 16.65 98.3 
 Southeast Asia  14.93 14.54–15.33 0.0 
Serum PTH, pg/mL, total 56 11,545 59.24 54.98, 63.51 99.7 
 Europe 31  62.88 56.17–69.58 99.8 
 North America 10  56.3 50.18–62.43 96.2 
 South America  67.3 63.08–71.52 0.0 
 Australia  51.4 47.61–55.19 59.8 
 Middle East  53.05 47.21–58.89 97.5 
 Southeast Asia  45.92 33.11–55.73 93.8 
Serum calcium, mg/dL, total 53 13,355 9.26 9.19–9.32 99.7 
 Europe 28  9.28 9.16, 9.39 99.8 
 North America  9.32 9.19, 9.44 98.1 
 South America  9.00 8.53, 9.48 99.2 
 Australia  9.36 9.25, 9.47 98.2 
 Middle East  9.19 9.04, 9.35 99.8 
 Southeast Asia  9.03 8.58, 9.48 99.5 
Serum magnesium, mg/dL, total 13 2,527 0.91 0.84, 0.98 100.0 
 Europe  0.81 0.79, 0.82 98.8 
 North America  1.44 0.77, 2.11 99.7 
 South America 
 Australia 
 Middle East  0.91 0.72, 1.09 99.9 
 Southeast Asia 
SubgroupIncluded studiesSample sizePooled mean estimate95% confidence intervalHeterogeneity I2, %
Serum 25(OH)D, ng/mL, total 96 18,998 18.65 17.85, 19.45 99.4 
 Europe 50  18.94 17.86, 20.02 99.5 
 North America 16  21.71 19.69, 23.74 97.2 
 South America  21.12 16.07, 26.16 99.1 
 Australia  17.77 14.90, 20.63 79.1 
 Middle East 17  15.29 13.93, 16.65 98.3 
 Southeast Asia  14.93 14.54–15.33 0.0 
Serum PTH, pg/mL, total 56 11,545 59.24 54.98, 63.51 99.7 
 Europe 31  62.88 56.17–69.58 99.8 
 North America 10  56.3 50.18–62.43 96.2 
 South America  67.3 63.08–71.52 0.0 
 Australia  51.4 47.61–55.19 59.8 
 Middle East  53.05 47.21–58.89 97.5 
 Southeast Asia  45.92 33.11–55.73 93.8 
Serum calcium, mg/dL, total 53 13,355 9.26 9.19–9.32 99.7 
 Europe 28  9.28 9.16, 9.39 99.8 
 North America  9.32 9.19, 9.44 98.1 
 South America  9.00 8.53, 9.48 99.2 
 Australia  9.36 9.25, 9.47 98.2 
 Middle East  9.19 9.04, 9.35 99.8 
 Southeast Asia  9.03 8.58, 9.48 99.5 
Serum magnesium, mg/dL, total 13 2,527 0.91 0.84, 0.98 100.0 
 Europe  0.81 0.79, 0.82 98.8 
 North America  1.44 0.77, 2.11 99.7 
 South America 
 Australia 
 Middle East  0.91 0.72, 1.09 99.9 
 Southeast Asia 

Parathyroid Hormone

Fifty-nine studies reported the serum PTH levels of the 11,545 individuals. The pooled mean estimate of serum PTH level was 59.24 pg/mL (95% CI: 54.98, 63.51) (I2 = 99.7%, p < 0.001) (Fig. 3b). In a subgroup analysis based on the geographical location, the highest and lowest pooled mean estimates were seen in South America and Southeast Asia, respectively (Table 2).

Calcium

Data on the serum calcium levels of 13,355 individuals were reported in 56 studies. According to the meta-analysis, the pooled mean estimate of the serum calcium level was 9.26 mg/dL (95% CI: 9.19–9.32, I2 = 99.7%, p < 0.001) (Fig. 3c). Subgroup analysis by geographical location established that Australia (pooled mean estimate of 9.36 mg/dL [9.25, 9.47, I2 = 98.2%, p < 0.001]) and South America (pooled mean estimate of 9.00 mg/dL [8.53, 9.48, I2 = 99.2%, p < 0.001]) had the highest and lowest estimates, respectively (Table 2).

Magnesium

Data on serum magnesium levels were reported in 15 studies, including 2,527 individuals. The pooled mean estimate of the serum magnesium level was 0.91 (0.84, 0.98, I2 = 100.0%, p < 0.001) (Fig. 3d). Subgroup analysis based on the geographical location determined that North America had the highest serum magnesium level estimate (1.44 mg/dL (0.77, 2.11) (I2 = 99.7%, p = 0.000 [Table 2]).

Sensitivity Analysis

According to the sensitivity analysis, omitting each individual study did not affect the result of the meta-analysis significantly.

This is the first systematic review and meta-analysis to evaluate vitamin D status and serum calcium, magnesium, and PTH in bariatric surgery candidates (severely obese people). Vitamin D status is essential for bone mineralization and muscle function, especially in patients with severe obesity who are at higher risk of deficiency before and after bariatric surgeries [41]. Vitamin D deficiency has been associated with increased risk of inflammatory diseases and also bone disease including rickets, osteomalacia, and osteoporosis [144]. According to the pooled estimates in the current meta-analysis, 59.44% of patients had vitamin D deficiency, and 26.95% had insufficiency. Considering the studies reporting deficiency + insufficiency, 76.24% had this condition. The pooled mean serum vitamin D was 18.65 ng/mL. Moreover, our subgroup analysis based on the geographical zones showed that the highest estimated vitamin D levels were reported in North and South America, and the lowest levels were seen in Southeast Asia and the Middle East.

In accordance with our findings, a prior study reported a 57.4% deficiency of vitamin D (<20 ng/mL) in severely obese bariatric surgery candidates [38]. However, there was a higher prevalence of vitamin D deficiency in the black (78.4%) compared to white cohort (36.5%), which seems logical due to the higher skin pigmentation of the black individuals [38]. Skin pigmentation, such as melanin, absorbs the ultraviolet radiation that initiates vitamin D synthesis and hence decreases the amount of vitamin D that is made for a given exposure compared to less pigmented skin [145]. Our results are also in line with the previous investigations reporting more than 50% of vitamin D deficiency in patients with severe obesity [12, 18, 39, 40]. In regards to serum levels of vitamin D, some studies reported higher [39], while some reported lower levels [12, 18]. Variations between studies about the exact estimates of vitamin D deficiency prevalence or vitamin D concentrations can possibly be due to the differences among studies regarding population, geographical locations, seasonal variations, race, gender, culture, religion, among others. On the other hand, the policy of different countries regarding food fortification can affect vitamin D intake and status in various regions [12]. For example, a large improvement in vitamin D status in different counties has been reported due to fortification of dairy products with vitamin D [146‒148]. Moreover, fortification of fruit juice, flour, cooking oil, and rice showed positive results in improving vitamin D status [149‒151]. Furthermore, different studies used various methods or laboratories for evaluating vitamin D status, and the results should be interpreted with caution [152].

There are many potential causes for vitamin D deficiency in severely obese individuals. One of the most important ones is related to the less sun exposure of this group due to decreased outdoor activities [6, 20]. Another reason may be lower intakes of dietary sources of vitamin D, including fortified foods, in this population. On the other hand, vitamin D deficiency can emanate from vitamin D sequestration in the adipose tissue or uptake by this tissue in obese people [23‒25, 153]. Further, it is hypothesized that fatty liver in severely obese people can impair liver vitamin D synthesis [12]. Nevertheless, due to its effects on bone mineralization and muscle function and its correlation with various diseases [26‒37, 66], optimizing vitamin D status in patients with severe obesity is an essential component for the treatment of this condition, especially since these vitamin D deficiencies could worsen after bariatric surgery [12].

Our subgroup analysis revealed that lowest vitamin D levels were reported in Southeast Asia and the Middle East. Contrary to our findings, it was reported that vitamin D deficiency prevalence gradually increased in Southeast Asia due to the excellent sun exposure of the residents in these areas in the past. However, even in Southeast Asian countries with good sun exposure, many people have limited sun exposure due to lifestyle changes. These changes include fewer outdoor activities and better access to transportation. In addition, some traditional protections (masks, gloves, etc.), especially at the hotter times of the day (e.g., noon), may cause lower sun exposure [154]. On the other hand, vitamin D-rich foods are few, and they are not consumed frequently by Southeast Asian inhabitants [155]. Indeed, strong recommendations exist to improve vitamin D status in Southeast Asia through different strategies, including food fortification [154].

Regarding lower vitamin D concentration in the Middle East, it is reported that vitamin D deficiency and insufficiency can be seen frequently in the Middle East, despite year-round sunny days. The main reason for such observation is pertinent to the traditional attire of the population of this geographical area [156]. The clothing style in the Middle East can deteriorate vitamin D status as their clothes are different from the western style due to hijab and nigab [157‒159]. Moreover, in many Middle East countries, outdoor physical activity is limited due to the hot and humid climate (such as Arab countries), and this can decrease sun exposure and adversely affect vitamin D status [41, 160]. Dietary factors and cultural beliefs can also affect vitamin D status and deficiency [156]. Lower calcium intake in the Middle East can also affect vitamin D status [156], which can cause rickets or secondary hyperparathyroidism and eventually low bone mass density. Other factors affecting lower vitamin D levels in the Middle East include urban living and pollution [161]. Additionally, lower vitamin D supplementation and lower intakes of vitamin D-rich foods such as cod liver oil and oily fish are dietary factors associated with vitamin D deficiency in the Middle Easterners. Further, some genetic factors and polymorphisms related to vitamin D metabolism and degradation could adversely affect vitamin D status [152].

According to the current meta-analysis, another region with low vitamin D levels is Australia. According to Nowson et al. [162], the deficiency was more pronounced in dark-skinned people and veiled women. However, due to the lack of sun exposure in the winter, Australia’s deficiency is more observed. Another problem that needs to be resolved in the region is making a balance between sun exposure and sunshine avoidance for skin cancer protection. In a nationally representative sample of Australian adults aged ≥25 years, one in five Australian resident (19% men; 21% women) were classified as vitamin D deficient, and 43% were classified as insufficient (45% men; 42% women) [163]. According to this study, independent predictors of vitamin D deficiency in Australia are being born in a country other than Australia or the main English-speaking countries, residing in southern (higher latitude) states of Australia, being assessed during winter or spring, being obese, smoking (women only), having low physical activity levels and not taking vitamin D or Ca supplements. According to the serum levels of vitamin D in the present study, average levels were somehow higher in Europe. In European countries, vitamin D status is better despite the deficiencies seen in some areas [152]. Large observational data have reported that almost 40% of Europeans are vitamin D deficient, and 13% are severely deficient [164]. This may vary by age, with lower levels in childhood and the elderly [165] as vitamin D deficiency is prevalent among older adults [166], and also ethnicity in different regions, for example, European Caucasians show lower rates of vitamin D deficiency compared with nonwhite individuals [164, 165]. Nordic countries in northern Europe encounter the lowest efficiencies of vitamin D due to the higher consumption of cod liver oil, supplements [167], and vitamin D-fortified foods [146]. However, poor vitamin D status was observed in the non-western immigrants in Europe [168‒173].

The highest vitamin D levels were observed in severe obese cohorts in the South and North American regions. This observation is in agreement with the results of a previous systematic review about vitamin D deficiency in various age groups and genders [174]. According to their findings, the highest mean vitamin D status was generally observed in North America. Extensive food fortifications can justify higher vitamin D levels in North America than vitamin D in the USA (such as cereals, milk, and juice) [175]. Higher intake of vitamin D-fortified foods by obese individuals may be the main cause of higher vitamin D levels in severe obese cohorts.

In the current study, evaluating the pooled estimated serum levels of PTH in the included studies showed higher levels of PTH in the severely obese patients. However, the lowest average level was seen in the Southeast Asians. The highest average level was reported in those from South America which was higher than the normal range. Lower dietary intakes of calcium with decreased serum calcium levels can justify the higher levels of PTH in South American cohorts [176, 177], which can be detrimental for bone health.

It was previously reported that PTH levels are increased in severely obese people and are highly correlated with BMI [178]. Vitamin D deficiency is the major cause of higher PTH levels in this population [179]. Other than an increase in PTH before bariatric surgeries, an elevation could possibly happen in PTH levels following the surgeries. It may be related to the correlations between high PTH and metabolic syndrome, non-alcoholic steatohepatitis, and lower bone mineral density [180]. Consequently, optimizing serum levels of PTH by correcting serum calcium and vitamin D is crucial in severely obese bariatric surgery candidates.

Our outcomes showed that the pooled estimate of calcium levels was in the normal range. However, the lowest and highest levels were reported in South America and Australia. Literature in various populations reported lower dietary calcium intake and higher hip fractures in South America [181, 182]. In contrast, higher calcium intake has been described in Australia [181], which is in line with the serum levels of calcium reported for these regions in the present meta-analysis. The higher levels of serum calcium concentrations together with normal PTH levels in Australian severely obese individuals should be accompanied with optimal vitamin D levels to ensure bone health. However, our outcomes showed Australia is an area with low serum levels of vitamin D. Since there are a high number of bariatric surgeries in Australia [183], optimizing serum levels of vitamin D in severely obese bariatric surgery candidates seems essential.

Regarding serum magnesium levels, we established that pooled estimated magnesium level was in the normal range in severely obese bariatric surgery candidates. The higher levels were reported in North America, possibly due to adequate dietary intake, and are important for bone health. According to previous findings, obesity is not related to hypomagnesemia, and only dietary magnesium intake is related to serum magnesium levels in obese populations [184]. Most of obese individuals have high intakes of this essential nutrient in their diets [184].

The present meta-analytic work has some limitations that need to be acknowledged. For instance, the studies were only categorized according to the geographical zones for subgroup analysis as other variables were not completely accounted for (such as season of data collection). Moreover, the measurement methods of vitamin D and other values, cut-off points, limit values according to countries and regions were not the same. Furthermore, the effects of some health conditions on blood values were not considered in this study. Additionally, only few studies reported serum levels of PTH, calcium, and magnesium. Consequently, our results for these parameters should be interpreted with caution. Furthermore, we evaluated bariatric surgery candidates, and our results should not generalize to those not qualifying for surgery. On the other hand, numerous studies were included in the evaluation of vitamin D, which can be considered the main strength of this meta-analysis.

To sum up, this systematic review and meta-analysis pooled the results of vitamin D status and serum levels of PTH, calcium, and magnesium in severely obese bariatric surgery candidates. Vitamin D deficiency was observed in more than 50 percent of this population. More than 70 percent had deficiency+ insufficiency. The highest serum levels of vitamin D were reported in South and North America, possibly due to the effect of vast fortification, and the lowest were seen in Southeast Asia and the Middle East, which may be related to cultural and dietary factors. Pooled estimated serum levels of calcium and magnesium were in the normal range, and the lowest calcium levels were observed in South America. On the contrary, higher pooled estimated levels of PTH were also reported in severely obese people, and South Americans had the greatest concentrations. Due to the high prevalence of vitamin D deficiency and the risk of hyperparathyroidism before and after bariatric surgeries, optimizing vitamin D levels through better fortification and supplementation policies, especially in high-risk populations (such as Southeast Asia and the Middle East), is recommended for ensuring bone health and preventing some chronic diseases. Strategies for better sun exposure are recommended for all countries. On the other hand, appropriate dietary calcium and magnesium intake and early assessment of PTH levels are recommended for this population.

An ethics statement is not applicable because this study is based exclusively on published literature. The protocol was previously published in the PROSPERO database (http://www.crd.york.ac.uk/PROSPERO), under registration no. CRD42019139937.

The authors have no conflicts of interest to declare.

This study is supported by Shiraz University of Medical Sciences (Grant No.: 26351).

Neda Haghighat and Hamidreza Foroutan contributed to conceptualization, investigation, supervision, validation, visualization, medical oversight, and preparation of the original draft and final manuscript. Zahra Sohrabi, Reza Barati-Boldaji, Zahra Esmaeilnezhad, and Marzieh Akbarzadeh contributed to conceptualization, data extraction, visualization, and writing of the final manuscript. Morteza Zare contributed to formal analysis, methodology, software, and validation. Neda Haghighat, Reza Bagheri, and Damoon Ashtary-Larky contributed to investigation, conceptualization, visualization, and preparation of the original draft. Seyed Vahid Hosseini, Alexei Wong, and Masoud Amini contributed to conceptualization, supervision, validation, project administration, and critical revision of the draft and final manuscript. All the authors approved the final manuscript.

All data generated or analyzed during this study are included in this manuscript. Further inquiries can be directed to the corresponding author.

1.
Ricci
MA
,
De Vuono
S
,
Scavizzi
M
,
Gentili
A
,
Lupattelli
G
.
Facing morbid obesity: how to approach it
.
Angiol Open Access
.
2016
;
67
(
4
):
391
7
.
2.
Cello
JP
,
Rogers
SJJC
.
Morbid obesity-the new pandemic: medical and surgical management, and implications for the practicing gastroenterologist
.
Clin Transl Gastroenterol
.
2013
;
4
(
6
):
e35
.
3.
Haghighat
N
,
Kazemi
A
,
Asbaghi
O
,
Jafarian
F
,
Moeinvaziri
N
,
Hosseini
B
.
Long-term effect of bariatric surgery on body composition in patients with morbid obesity: a systematic review and meta-analysis
.
Clin Nutr
.
2021
;
40
(
4
):
1755
66
.
4.
Haghighat
N
,
Ashtary-Larky
D
,
Bagheri
R
,
Mahmoodi
M
,
Rajaei
M
,
Alipour
M
.
The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: a randomised controlled trial
.
Br J Nutr
.
2020
;
124
(
10
):
1044
51
.
5.
Popkin
BM
,
Corvalan
C
,
Grummer-Strawn
LM
.
Dynamics of the double burden of malnutrition and the changing nutrition reality
.
Lancet
.
2020
;
395
(
10217
):
65
74
.
6.
Frame-Peterson
LA
,
Megill
RD
,
Carobrese
S
,
Schweitzer
M
.
Nutrient deficiencies are common prior to bariatric surgery
.
Nutr Clin Pract
.
2017
;
32
(
4
):
463
9
.
7.
Ernst
B
,
Thurnheer
M
,
Schmid
SM
,
Schultes
B
.
Evidence for the necessity to systematically assess micronutrient status prior to bariatric surgery
.
Obes Surg
.
2009
;
19
(
1
):
66
73
.
8.
de Luis
DA
,
Pacheco
D
,
Izaola
O
,
Terroba
MC
,
Cuellar
L
,
Cabezas
G
.
Micronutrient status in morbidly obese women before bariatric surgery
.
Surg Obes Relat Dis
.
2013
;
9
(
2
):
323
7
.
9.
Lefebvre
P
,
Letois
F
,
Sultan
A
,
Nocca
D
,
Mura
T
,
Galtier
F
.
Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study
.
Surg Obes Relat Dis
.
2014
;
10
(
3
):
540
6
.
10.
Peterson
LA
,
Cheskin
LJ
,
Furtado
M
,
Papas
K
,
Schweitzer
MA
,
Magnuson
TH
.
Malnutrition in bariatric surgery candidates: multiple micronutrient deficiencies prior to surgery
.
Obes Surg
.
2016
;
26
(
4
):
833
8
.
11.
Lee
PC
,
Ganguly
S
,
Dixon
JB
,
Tan
HC
,
Lim
CH
,
Tham
KW
.
Nutritional deficiencies in severe obesity: a multiethnic Asian cohort
.
Obes Surg
.
2019
;
29
(
1
):
166
71
.
12.
Al-Mutawa
A
,
Anderson
AK
,
Alsabah
S
,
Al-Mutawa
M
.
Nutritional status of bariatric surgery candidates
.
Nutrients
.
2018
;
10
(
1
):
67
.
13.
Goldner
WS
,
Stoner
JA
,
Thompson
J
,
Taylor
K
,
Larson
L
,
Erickson
J
.
Prevalence of vitamin D insufficiency and deficiency in morbidly obese patients: a comparison with non-obese controls
.
Obes Surg
.
2008
;
18
(
2
):
145
50
.
14.
Damms-Machado
A
,
Friedrich
A
,
Kramer
KM
,
Stingel
K
,
Meile
T
,
Küper
MA
.
Pre-and postoperative nutritional deficiencies in obese patients undergoing laparoscopic sleeve gastrectomy
.
Obes Surg
.
2012
;
22
(
6
):
881
9
.
15.
Ben-Porat
T
,
Elazary
R
,
Yuval
JB
,
Wieder
A
,
Khalaileh
A
,
Weiss
R
.
Nutritional deficiencies after sleeve gastrectomy: can they be predicted preoperatively
.
Surg Obes Relat Dis
.
2015
;
11
(
5
):
1029
36
.
16.
Pellitero
S
,
Martínez
E
,
Puig
R
,
Leis
A
,
Zavala
R
,
Granada
ML
.
Evaluation of vitamin and trace element requirements after sleeve gastrectomy at long term
.
Obes Surg
.
2017
;
27
(
7
):
1674
82
.
17.
Ben-Porat
T
,
Weiss
R
,
Sherf-Dagan
S
,
Nabulsi
N
,
Maayani
A
,
Khalaileh
A
.
Nutritional deficiencies in patients with severe obesity before bariatric surgery: what should be the focus during the preoperative assessment
.
J Acad Nutr Diet
.
2020
;
120
(
5
):
874
84
.
18.
Pellegrini
M
,
Hickman
EJ
,
Guttiérrez
JE
,
Smith
RJ
,
Hopper
SD
.
Revisiting the taxonomy of the neotropical haemodoraceae (commelinales)
.
PhytoKeys
.
2020
;
169
:
1
59
.
19.
Ewang-Emukowhate
M
,
Harrington
DJ
,
Botha
A
,
McGowan
B
,
Wierzbicki
AS
.
Vitamin K and other markers of micronutrient status in morbidly obese patients before bariatric surgery
.
Int J Clin Pract
.
2015
;
69
(
6
):
638
42
.
20.
Stein
J
,
Stier
C
,
Raab
H
,
Weiner
R
.
Review article: the nutritional and pharmacological consequences of obesity surgery
.
Aliment Pharmacol Ther
.
2014
;
40
(
6
):
582
609
.
21.
Vranić
L
,
Mikolašević
I
,
Milić
S
.
Vitamin D deficiency: consequence or cause of obesity
.
Medicina
.
2019
;
55
(
9
):
541
.
22.
Paschou
SA
,
Kosmopoulos
M
,
Nikas
IP
,
Spartalis
M
,
Kassi
E
,
Goulis
DG
.
The impact of obesity on the association between vitamin D deficiency and cardiovascular disease
.
Nutrients
.
2019
;
11
(
10
):
2458
.
23.
Vanlint
S
.
Vitamin D and obesity
.
Nutrients
.
2013
;
5
(
3
):
949
56
.
24.
Tsiaras
WG
,
Weinstock
MA
.
Factors influencing vitamin D status
.
Acta Derm Venereol
.
2011
;
91
(
2
):
115
24
.
25.
Holick
MF
.
Vitamin D deficiency
.
N Engl J Med
.
2007
;
357
(
3
):
266
81
.
26.
Bacci
V
,
Silecchia
G
.
Vitamin D status and supplementation in morbid obesity before and after bariatric surgery
.
Expert Rev Gastroenterol Hepatol
.
2010
;
4
(
6
):
781
94
.
27.
Zaghloul
S
,
Al-Hooti
SN
,
Al-Hamad
N
,
Al-Zenki
S
,
Alomirah
H
,
Alayan
I
.
Evidence for nutrition transition in Kuwait: over-consumption of macronutrients and obesity
.
Public Health Nutr
.
2013
;
16
(
4
):
596
607
.
28.
Ducloux
R
,
Nobécourt
E
,
Chevallier
JM
,
Ducloux
H
,
Elian
N
,
Altman
JJ
.
Vitamin D deficiency before bariatric surgery: should supplement intake be routinely prescribed
.
Obes Surg
.
2011
;
21
(
5
):
556
60
.
29.
Gudzune
KA
,
Huizinga
MM
,
Chang
HY
,
Asamoah
V
,
Gadgil
M
,
Clark
JM
.
Screening and diagnosis of micronutrient deficiencies before and after bariatric surgery
.
Obes Surg
.
2013
;
23
(
10
):
1581
9
.
30.
Clare Grace
P
,
Vincent
R
,
Aylwin
SJ
.
High prevalence of vitamin D insufficiency in a United Kingdom urban morbidly obese population: implications for testing and treatment
.
Surg Obes Relat Dis
.
2014
;
10
(
2
):
355
60
.
31.
Bischoff-Ferrari
HA
,
Giovannucci
E
,
Willett
WC
,
Dietrich
T
,
Dawson-Hughes
B
.
Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes
.
Am J Clin Nutr
.
2006
;
84
(
1
):
18
28
.
32.
Gannage-Yared
M-H
,
Maalouf
G
,
Khalife
S
,
Challita
S
,
Yaghi
Y
,
Ziade
N
.
Prevalence and predictors of vitamin D inadequacy amongst Lebanese osteoporotic women
.
Br J Nutr
.
2009
;
101
(
4
):
487
91
.
33.
Liu
E
,
Meigs
JB
,
Pittas
AG
,
McKeown
NM
,
Economos
CD
,
Booth
SL
.
Plasma 25-hydroxyvitamin D is associated with markers of the insulin resistant phenotype in nondiabetic adults
.
J Nutr
.
2009
;
139
(
2
):
329
34
.
34.
Judd
SE
,
Nanes
MS
,
Ziegler
TR
,
Wilson
PWF
,
Tangpricha
V
.
Optimal vitamin D status attenuates the age-associated increase in systolic blood pressure in white Americans: results from the third National Health and Nutrition Examination Survey
.
Am J Clin Nutr
.
2008
;
87
(
1
):
136
41
.
35.
Kim
DH
,
Sabour
S
,
Sagar
UN
,
Adams
S
,
Whellan
DJ
.
Prevalence of hypovitaminosis D in cardiovascular diseases (from the national health and nutrition examination survey 2001 to 2004)
.
Am J Cardiol
.
2008
;
102
(
11
):
1540
4
.
36.
Alshahrani
FM
,
Almalki
MH
,
Aljohani
N
,
Alzahrani
A
,
Alsaleh
Y
,
Holick
MF
.
Vitamin D: light side and best time of sunshine in Riyadh, Saudi Arabia
.
Dermatoendocrinol
.
2013
;
5
(
1
):
177
80
.
37.
Cannell
J
,
Hollis
BW
,
Zasloff
M
,
Heaney
RP
.
Diagnosis and treatment of vitamin D deficiency
.
Expert Opin Pharmacother
.
2008
;
9
(
1
):
107
18
.
38.
Gemmel
K
,
Santry
HP
,
Prachand
VN
,
Alverdy
JC
.
Vitamin D deficiency in preoperative bariatric surgery patients
.
Surg Obes Relat Dis
.
2009
;
5
(
1
):
54
9
.
39.
Vivan
MA
,
Kops
NL
,
Fülber
ER
,
de Souza
AC
,
Fleuri
MASB
,
Friedman
R
.
Prevalence of vitamin D depletion, and associated factors, among patients undergoing bariatric surgery in southern Brazil
.
Obes Surg
.
2019
;
29
(
10
):
3179
87
.
40.
Tan
BC
,
Park
YS
,
Won
Y
,
Lee
S
,
Kang
SH
,
Ahn
SH
.
Preoperative nutritional deficiencies in bariatric surgery candidates in korea
.
Obes Surg
.
2021
;
31
(
6
):
2660
8
.
41.
Aridi
HD
,
Alami
RS
,
Fouani
T
,
Shamseddine
G
,
Tamim
H
,
Safadi
B
.
Prevalence of vitamin D deficiency in adults presenting for bariatric surgery in Lebanon
.
Surg Obes Relat Dis
.
2016
;
12
(
2
):
405
11
.
42.
Brent
G
,
LeBoff
MS
,
Seely
EW
,
Conlin
PR
,
Brown
EM
.
Relationship between the concentration and rate of change of calcium and serum intact parathyroid hormone levels in normal humans
.
J Clin Endocrinol Metab
.
1988
;
67
(
5
):
944
50
.
43.
Navarro
JF
,
Mora
C
,
Jiménez
A
,
Torres
A
,
Macía
M
,
García
J
.
Relationship between serum magnesium and parathyroid hormone levels in hemodialysis patients
.
Am J Kidney Dis
.
1999
;
34
(
1
):
43
8
.
44.
Liu
C
,
Wu
D
,
Zhang
JF
,
Xu
D
,
Xu
WF
,
Chen
Y
.
Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis
.
Obes Surg
.
2016
;
26
(
1
):
91
7
.
45.
Moher
D
,
Liberati
A
Prisma Group.
Tetzlaff
J
,
Altman
DG
PRISMA Group
.
Preferred reporting items for systematic reviews and meta‐analyses: the PRISMA statement
.
PLoS Med
.
2009
;
6
(
7
):
e1000097
.
46.
Sturm
R
.
Increases in morbid obesity in the USA: 2000–2005
.
Public health
.
2007
;
121
(
7
):
492
6
.
47.
Sim
J
,
Wright
CC
.
The kappa statistic in reliability studies: use, interpretation, and sample size requirements
.
Phys Ther
.
2005
;
85
(
3
):
257
68
.
48.
Alejo Ramos
M
,
Cano Rodríguez
IM
,
Urioste Fondo
AM
,
Pintor de la Maza
B
,
Barajas Galindo
DE
,
Fernández Martínez
P
.
Secondary hyperparathyroidism in patients with biliopancreatic diversion after 10 years of follow-up, and relationship with vitamin D and serum calcium
.
Obes Surg
.
2019
;
29
(
3
):
999
1006
.
49.
Al-Mutawa
A
,
Al-Sabah
S
,
Anderson
AK
,
Al-Mutawa
M
.
Evaluation of nutritional status post laparoscopic sleeve gastrectomy—5-year outcomes
.
Obes Surg
.
2018
;
28
(
6
):
1473
83
.
50.
Arias
PM
,
Domeniconi
EA
,
García
M
,
Esquivel
CM
,
Martínez Lascano
F
,
Foscarini
JM
.
Micronutrient deficiencies after Roux-en-Y gastric bypass: long-term results
.
Obes Surg
.
2020
;
30
(
1
):
169
73
.
51.
Asghari
G
,
Khalaj
A
,
Ghadimi
M
,
Mahdavi
M
,
Farhadnejad
H
,
Valizadeh
M
.
Prevalence of micronutrient deficiencies prior to bariatric surgery: tehran Obesity Treatment Study (TOTS)
.
Obes Surg
.
2018
;
28
(
8
):
2465
72
.
52.
Bandstein
M
,
Schultes
B
,
Ernst
B
,
Thurnheer
M
,
Schiöth
HB
,
Benedict
C
.
The role of FTO and vitamin D for the weight loss effect of Roux-en-Y gastric bypass surgery in obese patients
.
Obes Surg
.
2015
;
25
(
11
):
2071
7
.
53.
Beckman
LM
,
Earthman
CP
,
Thomas
W
,
Compher
CW
,
Muniz
J
,
Horst
RL
.
Serum 25 (OH) vitamin D concentration changes after Roux-en-Y gastric bypass surgery
.
Obesity
.
2013
21
12
E599
606
.
54.
Ben-Porat
T
,
Elazary
R
,
Goldenshluger
A
,
Sherf Dagan
S
,
Mintz
Y
,
Weiss
R
.
Nutritional deficiencies four years after laparoscopic sleeve gastrectomy—are supplements required for a lifetime
.
Surg Obes Relat Dis
.
2017
;
13
(
7
):
1138
44
.
55.
Bredella
MA
,
Greenblatt
LB
,
Eajazi
A
,
Torriani
M
,
Yu
EW
.
Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue
.
Bone
.
2017
;
95
:
85
90
.
56.
Caron
M
,
Hould
FS
,
Lescelleur
O
,
Marceau
S
,
Lebel
S
,
Julien
F
.
Long-term nutritional impact of sleeve gastrectomy
.
Surg Obes Relat Dis
.
2017
;
13
(
10
):
1664
73
.
57.
Carrasco
F
,
Basfi-Fer
K
,
Rojas
P
,
Valencia
A
,
Csendes
A
,
Codoceo
J
.
Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels
.
Obes Surg
.
2014
;
24
(
6
):
877
84
.
58.
Carrasco
F
,
Basfi-Fer
K
,
Rojas
P
,
Csendes
A
,
Papapietro
K
,
Codoceo
J
.
Calcium absorption may be affected after either sleeve gastrectomy or Roux-en-Y gastric bypass in premenopausal women: a 2-y prospective study
.
Am J Clin Nutr
.
2018
;
108
(
1
):
24
32
.
59.
Casella
C
,
Molfino
S
,
Mittempergher
F
,
Cappelli
C
,
Portolani
N
.
Predictive factors of secondary normocalcemic hyperparathyroidism after Roux-en-Y gastric bypass
.
Int J Endocrinol
.
2018
;
2018
:
5010287
.
60.
Chereau
N
,
Vuillermet
C
,
Tilly
C
,
Buffet
C
,
Trésallet
C
,
du Montcel
ST
.
Hypocalcemia after thyroidectomy in patients with a history of bariatric surgery
.
Surg Obes Relat Dis
.
2017
;
13
(
3
):
484
90
.
61.
Cloutier
A
,
Lebel
S
,
Hould
F
,
Julien
F
,
Marceau
S
,
Bouvet
L
.
Long alimentary limb duodenal switch (LADS): a short-term prospective randomized trial
.
Surg Obes Relat Dis
.
2018
;
14
(
1
):
30
7
.
62.
Coupaye
M
,
Rivière
P
,
Breuil
MC
,
Castel
B
,
Bogard
C
,
Dupré
T
.
Comparison of nutritional status during the first year after sleeve gastrectomy and Roux-en-Y gastric bypass
.
Obes Surg
.
2014
;
24
(
2
):
276
83
.
63.
Cuesta
M
,
Pelaz
L
,
Pérez
C
,
Torrejón
MJ
,
Cabrerizo
L
,
Matía
P
.
Fat-soluble vitamin deficiencies after bariatric surgery could be misleading if they are not appropriately adjusted
.
Nutr Hosp
.
2014
;
30
(
1
):
118
23
.
64.
Sherf Dagan
S
,
Zelber-Sagi
S
,
Webb
M
,
Keidar
A
,
Raziel
A
,
Sakran
N
.
Nutritional status prior to laparoscopic sleeve gastrectomy surgery
.
Obes Surg
.
2016
;
26
(
9
):
2119
26
.
65.
Dogan
K
,
Aarts
EO
,
Koehestanie
P
,
Betzel
B
,
Ploeger
N
,
de Boer
H
.
Optimization of vitamin suppletion after Roux-en-Y gastric bypass surgery can lower postoperative deficiencies: a randomized controlled trial
.
Medicine
.
2014
;
93
(
25
):
e169
.
66.
Ducloux
R
,
Janin
C
,
Ducloux
H
,
Altman
JJ
.
High vitamin D deficiency rate in metabolic inpatients: is bariatric surgery planning found guilty
.
Obes Surg
.
2014
;
24
(
11
):
1947
53
.
67.
Elhag
W
,
El Ansari
W
,
Abdulrazzaq
S
,
Abdullah
A
,
Elsherif
M
,
Elgenaied
I
.
Evolution of 29 anthropometric, nutritional, and cardiometabolic parameters among morbidly obese adolescents 2 years post sleeve gastrectomy
.
Obes Surg
.
2018
;
28
:
474
82
.
68.
Elias
E
,
Casselbrant
A
,
Werling
M
,
Abegg
K
,
Vincent
RP
,
Alaghband-Zadeh
J
.
Bone mineral density and expression of vitamin D receptor-dependent calcium uptake mechanisms in the proximal small intestine after bariatric surgery
.
Br J Surg
.
2014
;
101
(
12
):
1566
75
.
69.
Flores
L
,
Moizé
V
,
Ortega
E
,
Rodríguez
L
,
Andreu
A
,
Filella
X
.
Prospective study of individualized or high fixed doses of vitamin D supplementation after bariatric surgery
.
Obes Surg
.
2015
;
25
(
3
):
470
6
.
70.
Ghiassi
S
,
Higa
K
,
Chang
S
,
Ma
P
,
Lloyd
A
,
Boone
K
.
Conversion of standard Roux-en-Y gastric bypass to distal bypass for weight loss failure and metabolic syndrome: 3-year follow-up and evolution of technique to reduce nutritional complications
.
Surg Obes Relat Dis
.
2018
;
14
(
5
):
554
61
.
71.
Gillon
S
,
Jeanes
YM
,
Andersen
JR
,
Våge
V
.
Micronutrient status in morbidly obese patients prior to laparoscopic sleeve gastrectomy and micronutrient changes 5 years post-surgery
.
Obes Surg
.
2017
;
27
(
3
):
606
12
.
72.
Guan
B
,
Yang
J
,
Chen
Y
,
Yang
W
,
Wang
C
.
Nutritional deficiencies in Chinese patients undergoing gastric bypass and sleeve gastrectomy: prevalence and predictors
.
Obes Surg
.
2018
;
28
(
9
):
2727
36
.
73.
Guglielmi
V
,
Bellia
A
,
Gentileschi
P
,
Lombardo
M
,
D’Adamo
M
,
Lauro
D
.
Parathyroid hormone in surgery-induced weight loss: no glucometabolic effects but potential adaptive response to skeletal loading
.
Endocrine
.
2018
;
59
(
2
):
288
95
.
74.
Smelt
HJ
,
Pouwels
S
,
Smulders
JF
.
The influence of different cholecalciferol supplementation regimes on 25 (OH) cholecalciferol, calcium and parathyroid hormone after bariatric surgery
.
Medicina
.
2019
;
55
(
6
):
252
.
75.
Henfridsson
P
,
Laurenius
A
,
Wallengren
O
,
Beamish
AJ
,
Dahlgren
J
,
Flodmark
CE
.
Micronutrient intake and biochemistry in adolescents adherent or nonadherent to supplements 5 years after Roux-en-Y gastric bypass surgery
.
Surg Obes Relat Dis
.
2019
;
15
(
9
):
1494
502
.
76.
Hultin
H
,
Stevens
K
,
Sundbom
M
.
Cholecalciferol injections are effective in hypovitaminosis D after duodenal switch: a randomized controlled study
.
Obes Surg
.
2018
;
28
(
10
):
3007
11
.
77.
Johnson
LM
,
Ikramuddin
S
,
Leslie
DB
,
Slusarek
B
,
Killeen
AA
.
Analysis of vitamin levels and deficiencies in bariatric surgery patients: a single-institutional analysis
.
Surg Obes Relat Dis
.
2019
;
15
(
7
):
1146
52
.
78.
Karefylakis
C
,
Näslund
I
,
Edholm
D
,
Sundbom
M
,
Karlsson
FA
,
Rask
E
.
Vitamin D status 10 years after primary gastric bypass: gravely high prevalence of hypovitaminosis D and raised PTH levels
.
Obes Surg
.
2014
;
24
(
3
):
343
8
.
79.
Kim
MK
,
Kim
W
,
Kwon
HS
,
Baek
KH
,
Kim
EK
,
Song
KH
.
Effects of bariatric surgery on metabolic and nutritional parameters in severely obese K orean patients with type 2 diabetes: a prospective 2‐year follow up
.
J Diabetes Investig
.
2014
;
5
(
2
):
221
7
.
80.
Lanzarini
E
,
Nogués
X
,
Goday
A
,
Benaiges
D
,
de Ramón
M
,
Villatoro
M
.
High-dose vitamin D supplementation is necessary after bariatric surgery: a prospective 2-year follow-up study
.
Obes Surg
.
2015
;
25
(
9
):
1633
8
.
81.
Luger
M
,
Kruschitz
R
,
Langer
F
,
Prager
G
,
Walker
M
,
Marculescu
R
.
Effects of omega-loop gastric bypass on vitamin D and bone metabolism in morbidly obese bariatric patients
.
Obes Surg
.
2015
;
25
(
6
):
1056
62
.
82.
Luger
M
,
Kruschitz
R
,
Kienbacher
C
,
Traussnigg
S
,
Langer
FB
,
Prager
G
.
Vitamin D 3 loading is superior to conventional supplementation after weight loss surgery in vitamin D-deficient morbidly obese patients: a double-blind randomized placebo-controlled trial
.
Obes Surg
.
2017
;
27
(
5
):
1196
207
.
83.
Luger
M
,
Kruschitz
R
,
Winzer
E
,
Schindler
K
,
Grabovac
I
,
Kainberger
F
.
Changes in bone mineral density following weight loss induced by one-anastomosis gastric bypass in patients with vitamin D supplementation
.
Obes Surg
.
2018
;
28
(
11
):
3454
65
.
84.
Malek
M
,
Yousefi
R
,
Safari
S
,
Seyyedi
SHS
,
Mottaghi
A
.
Dietary intakes and biochemical parameters of morbidly obese patients prior to bariatric surgery
.
Obes Surg
.
2019
;
29
(
6
):
1816
22
.
85.
Menegati
GC
,
de Oliveira
LC
,
Santos
ALA
,
Cohen
L
,
Mattos
F
,
Mendonça
LMC
.
Nutritional status, body composition, and bone health in women after bariatric surgery at a University Hospital in Rio de Janeiro
.
Obes Surg
.
2016
;
26
(
7
):
1517
24
.
86.
Mihmanli
M
,
Isil
RG
,
Isil
CT
,
Omeroglu
S
,
Sayin
P
,
Oba
S
.
Effects of laparoscopic sleeve gastrectomy on parathyroid hormone, vitamin D, calcium, phosphorus, and albumin levels
.
Obes Surg
.
2017
;
27
(
12
):
3149
55
.
87.
Moore
CE
,
Sherman
V
.
Vitamin D supplementation efficacy: sleeve gastrectomy versus gastric bypass surgery
.
Obes Surg
.
2014
;
24
(
12
):
2055
60
.
88.
Obinwanne
KM
,
Riess
KP
,
Kallies
KJ
,
Mathiason
MA
,
Manske
BR
,
Kothari
SN
.
Effects of laparoscopic Roux-en-Y gastric bypass on bone mineral density and markers of bone turnover
.
Surg Obes Relat Dis
.
2014
;
10
(
6
):
1056
62
.
89.
Obispo Entrenas
A
,
Legupin Tubio
D
,
Lucena Navarro
F
,
Martin Carvajal
F
,
Gandara Adan
N
,
Redondo Bautista
M
.
Relationship between vitamin D deficiency and the components of metabolic syndrome in patients with morbid obesity, before and 1 year after laparoscopic Roux-en-Y gastric bypass or sleeve gastrectomy
.
Obes Surg
.
2017
;
27
(
5
):
1222
8
.
90.
Ong
MW
,
Tan
CH
,
Cheng
AKS
.
Prevalence and determinants of vitamin D deficiency among the overweight and obese Singaporeans seeking weight management including bariatric surgery: a relationship with bone health
.
Obes Surg
.
2018
;
28
(
8
):
2305
12
.
91.
Perin
J
,
Prokopowicz
G
,
Furtado
M
,
Papas
K
,
Steele
KE
.
A randomized trial of a novel chewable multivitamin and mineral supplement following Roux-en-Y gastric bypass
.
Obes Surg
.
2018
;
28
(
8
):
2406
20
.
92.
Marengo
AP
,
Guerrero Pérez
F
,
San Martín
L
,
Monseny
R
,
Casajoana
A
,
Valera
R
.
Is trabecular bone score valuable in bone microstructure assessment after gastric bypass in women with morbid obesity
.
Nutrients
.
2017
;
9
(
12
):
1314
.
93.
Quraishi
SA
,
Bittner
EA
,
Blum
L
,
Hutter
MM
,
Camargo
CA
Jr
.
Association between preoperative 25-hydroxyvitamin D level and hospital-acquired infections following Roux-en-Y gastric bypass surgery
.
JAMA Surg
.
2014
;
149
(
2
):
112
8
.
94.
Raoof
M
,
Näslund
I
,
Rask
E
,
Szabo
E
.
Effect of gastric bypass on bone mineral density, parathyroid hormone and vitamin D: 5 years follow-up
.
Obes Surg
.
2016
;
26
:
1141
5
.
95.
Díez Rodríguez
R
,
Ballesteros Pomar
MD
,
Calleja Fernández
A
,
Calleja Antolin
S
,
Cano Rodríguez
I
,
Linares Torres
P
.
Vitamin D levels and bone turnover markers are not related to non-alcoholic fatty liver disease in severely obese patients
.
Nutricion hospitalaria
.
2014
;
30
(
6
):
1256
62
.
96.
Ruiz-Tovar
J
,
Oller
I
,
Priego
P
,
Arroyo
A
,
Calero
A
,
Diez
M
.
Short-and mid-term changes in bone mineral density after laparoscopic sleeve gastrectomy
.
Obes Surg
.
2013
;
23
(
7
):
861
6
.
97.
van Rutte
PWJ
,
Aarts
EO
,
Smulders
JF
,
Nienhuijs
SW
.
Nutrient deficiencies before and after sleeve gastrectomy
.
Obes Surg
.
2014
;
24
(
10
):
1639
46
.
98.
Sánchez
A
,
Rojas
P
,
Basfi-Fer
K
,
Carrasco
F
,
Inostroza
J
,
Codoceo
J
.
Micronutrient deficiencies in morbidly obese women prior to bariatric surgery
.
Obes Surg
.
2016
;
26
(
2
):
361
8
.
99.
Schaaf
C
,
Gugenheim
J
.
Impact of preoperative serum vitamin D level on postoperative complications and excess weight loss after gastric bypass
.
Obes Surg
.
2017
;
27
(
8
):
1982
5
.
100.
Schafer
AL
,
Weaver
CM
,
Black
DM
,
Wheeler
AL
,
Chang
H
,
Szefc
GV
.
Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status
.
J Bone Miner Res
.
2015
;
30
(
8
):
1377
85
.
101.
Schijns
W
,
Schuurman
LT
,
Melse-Boonstra
A
,
van Laarhoven
CJHM
,
Berends
FJ
,
Aarts
EO
.
Do specialized bariatric multivitamins lower deficiencies after RYGB
.
Surg Obes Relat Dis
.
2018
;
14
(
7
):
1005
12
.
102.
Schijns
W
,
Aarts
EO
,
Berends
FJ
,
Janssen
IMC
,
Schweitzer
DH
.
Loose and frequent stools and PTH levels are positively correlated post–gastric bypass surgery due to less efficient intestinal calcium absorption
.
Surg Obes Relat Dis
.
2016
;
12
(
8
):
1548
53
.
103.
Sayadi Shahraki
M
,
Khalili
N
,
Yousefvand
S
,
Sheikhbahaei
E
,
Shahabi Shahmiri
S
.
Severe obesity and vitamin D deficiency treatment options before bariatric surgery: a randomized clinical trial
.
Surg Obes Relat Dis
.
2019
;
15
(
9
):
1604
11
.
104.
Sundbom
M
,
Berne
B
,
Hultin
H
.
Short-term UVB treatment or intramuscular cholecalciferol to prevent hypovitaminosis D after gastric bypass: a randomized clinical trial
.
Obes Surg
.
2016
;
26
(
9
):
2198
203
.
105.
Svanevik
M
,
Risstad
H
,
Hofsø
D
,
Blom-Høgestøl
IK
,
Kristinsson
JA
,
Sandbu
R
.
Bone turnover markers after standard and distal Roux-en-Y gastric bypass: results from a randomized controlled trial
.
Obes Surg
.
2019
;
29
(
9
):
2886
95
.
106.
Dos Santos
MTA
,
Suano-Souza
FI
,
Affonso Fonseca
FL
,
Lazaretti-Castro
M
,
Sarni
ROS
.
Is there association between vitamin D concentrations and body mass index variation in women submitted to Y-roux surgery
.
J Obes
.
2018
;
2018
:
3251675
.
107.
Vilarrasa
N
,
de Gordejuela
AGR
,
Gómez-Vaquero
C
,
Pujol
J
,
Elio
I
,
San José
P
.
Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy
.
Obes Surg
.
2013
;
23
(
12
):
2086
91
.
108.
Vinolas
H
,
Barnetche
T
,
Ferrandi
G
,
Monsaingeon-Henry
M
,
Pupier
E
,
Collet
D
.
Oral hydration, food intake, and nutritional status before and after bariatric surgery
.
Obes Surg
.
2019
;
29
(
9
):
2896
903
.
109.
Vix
M
,
Liu
KH
,
Diana
M
,
D’Urso
A
,
Mutter
D
,
Marescaux
J
.
Impact of Roux-en-Y gastric bypass versus sleeve gastrectomy on vitamin D metabolism: short-term results from a prospective randomized clinical trial
.
Surg Endosc
.
2014
;
28
(
3
):
821
6
.
110.
Wei
J-H
,
Lee
WJ
,
Chong
K
,
Lee
YC
,
Chen
SC
,
Huang
PH
.
High incidence of secondary hyperparathyroidism in bariatric patients: comparing different procedures
.
Obes Surg
.
2018
;
28
(
3
):
798
804
.
111.
Worm
D
,
Madsbad
S
,
Kristiansen
VB
,
Naver
L
,
Hansen
DL
.
Changes in hematology and calcium metabolism after gastric bypass surgery: a 2-year follow-up study
.
Obes Surg
.
2015
;
25
(
9
):
1647
52
.
112.
Yu
EW
,
Bouxsein
ML
,
Putman
MS
,
Monis
EL
,
Roy
AE
,
Pratt
JSA
.
Two-year changes in bone density after Roux-en-Y gastric bypass surgery
.
J Clin Endocrinol Metab
.
2015
;
100
(
4
):
1452
9
.
113.
Zarshenas
N
,
Nacher
M
,
Loi
KW
,
Jorgensen
JO
.
Investigating nutritional deficiencies in a group of patients 3 years post laparoscopic sleeve gastrectomy
.
Obes Surg
.
2016
;
26
(
12
):
2936
43
.
114.
Zubiaga Toro
L
,
Ruiz-Tovar Polo
J
,
Díez-Tabernilla
M
,
Giner Bernal
L
,
Arroyo Sebastián
A
,
Calpena Rico
R
.
Fórmula CUN-BAE y factores bioquímicos como marcadores predictivos de obesidad y enfermedad cardiovascular en pacientes pre y post gastrectomía vertical
.
Nutr Hosp
.
2014
;
30
(
2
):
281
6
.
115.
Lancha
A
,
Moncada
R
,
Valentí
V
,
Rodríguez
A
,
Catalán
V
,
Becerril
S
.
Comparative effects of gastric bypass and sleeve gastrectomy on plasma osteopontin concentrations in humans
.
Surg Endosc
.
2014
;
28
(
8
):
2412
20
.
116.
Wolf
E
,
Utech
M
,
Stehle
P
,
Büsing
M
,
Helfrich
HP
,
Stoffel-Wagner
B
.
Oral high-dose vitamin D dissolved in oil raised serum 25-hydroxy-vitamin D to physiological levels in obese patients after sleeve gastrectomy: a double-blind, randomized, and placebo-controlled trial
.
Obes Surg
.
2016
;
26
(
8
):
1821
9
.
117.
Topaloğlu
Ö
The frequency of vitamin D deficiency in obese patients on bariatric surgery wait list: is there any association with Co-existence of prediabetes or diabetes
.
2019
.
118.
Blom-Høgestøl
IK
,
Hewitt
S
,
Chahal-Kummen
M
,
Brunborg
C
,
Gulseth
HL
,
Kristinsson
JA
.
Bone metabolism, bone mineral density and low-energy fractures 10 years after Roux-en-Y gastric bypass
.
Bone
.
2019
;
127
:
436
45
.
119.
Jonas
MI
,
Kuryłowicz
A
,
Bartoszewicz
Z
,
Lisik
W
,
Jonas
M
,
Kozniewski
K
.
Vitamin D receptor gene expression in adipose tissue of obese individuals is regulated by miRNA and correlates with the pro-inflammatory cytokine level
.
Int J Mol Sci
.
2019
;
20
(
21
):
5272
.
120.
Marques Loureiro
L
,
Lessa
S
,
Mendes
R
,
Pereira
S
,
Saboya
CJ
,
Ramalho
A
.
Does the metabolically healthy obese phenotype protect adults with class III obesity from biochemical alterations related to bone metabolism
.
Nutrients
.
2019
;
11
(
9
):
2125
.
121.
Ministrini
S
,
Ricci
MA
,
Daviddi
G
,
Scavizzi
M
,
De Vuono
S
,
D’Abbondanza
M
.
Determinants of high parathyroid hormone levels in patients with severe obesity and their relationship with the cardiometabolic risk factors, before and after a laparoscopic sleeve gastrectomy intervention
.
Obes Surg
.
2020
;
30
(
6
):
2225
32
.
122.
Belfiore
A
,
Cataldi
M
,
Minichini
L
,
Aiello
ML
,
Trio
R
,
Rossetti
G
.
Short-term changes in body composition and response to micronutrient supplementation after laparoscopic sleeve gastrectomy
.
Obes Surg
.
2015
;
25
(
12
):
2344
51
.
123.
Capoccia
D
,
Coccia
F
,
Paradiso
F
,
Abbatini
F
,
Casella
G
,
Basso
N
.
Laparoscopic gastric sleeve and micronutrients supplementation: our experience
.
J Obes
.
2012
;
2012
:
672162
.
124.
Toh
SY
,
Zarshenas
N
,
Jorgensen
J
.
Prevalence of nutrient deficiencies in bariatric patients
.
Nutrition
.
2009
25
11–12
1150
6
.
125.
Chan
L-N
,
Neilson
CH
,
Kirk
EA
,
Colovos
TF
,
Javelli
DR
,
Khandelwal
S
.
Optimization of vitamin D status after Roux-en-Y gastric bypass surgery in obese patients living in northern climate
.
Obes Surg
.
2015
;
25
(
12
):
2321
7
.
126.
Salazar
DA
,
Ferreira
MJS
,
Neves
JS
,
Pedro
JMP
,
Guerreiro
VA
,
E Silva Viana
S
.
Variable thresholds of vitamin D plasma levels to suppress PTH: the effect of weight and bariatric surgery
.
Obes Surg
.
2020
;
30
(
4
):
1551
9
.
127.
Fox
W
,
Borgert
A
,
Rasmussen
C
,
Kallies
K
,
Klas
P
,
Kothari
S
.
Long-term micronutrient surveillance after gastric bypass surgery in an integrated healthcare system
.
Surg Obes Relat Dis
.
2019
;
15
(
3
):
389
95
.
128.
Silveira
EA
,
Cardoso
CKS
,
Moura
LANE
,
Dos Santos Rodrigues
AP
,
de Oliveira
C
.
Serum and dietary vitamin D in individuals with class II and III obesity: prevalence and association with metabolic syndrome
.
Nutrients
.
2021
;
13
(
7
):
2138
.
129.
Pinto
SL
,
Juvanhol
LL
,
Bressan
J
.
Weight loss after RYGB is associated with an increase in serum vitamin D in a population with low prevalence of hypovitaminosis D at low latitude
.
Obes Surg
.
2020
;
30
(
11
):
4187
91
.
130.
Wang
C
,
Zhang
H
,
Xu
T
,
Zou
J
,
Chen
J
,
Zhang
P
.
Bone metabolism in Chinese patients after laparoscopic Roux-en-Y gastric bypass
.
Transl Cancer Res
.
2020
;
9
(
4
):
2534
41
.
131.
Altawil
E
,
Alkofide
H
,
Alamri
H
,
Alhassan
N
,
Alsubaie
H
,
Alqahtani
A
.
Secondary hyperparathyroidism in obese patients post sleeve gastrectomy
.
Diabetes Metab Syndr Obes
.
2021
;
14
:
4059
66
.
132.
Pellegrini
M
,
Rahimi
F
,
Boschetti
S
,
Devecchi
A
,
De Francesco
A
,
Mancino
MV
.
Pre-operative micronutrient deficiencies in patients with severe obesity candidates for bariatric surgery
.
J Endocrinol Invest
.
2021
;
44
(
7
):
1413
23
.
133.
Ballesteros-Pomar
MD
,
González de Francisco
T
,
Urioste-Fondo
A
,
González-Herraez
L
,
Calleja-Fernández
A
,
Vidal-Casariego
A
.
Biliopancreatic diversion for severe obesity: long-term effectiveness and nutritional complications
.
Obes Surg
.
2016
;
26
(
1
):
38
44
.
134.
van der Beek
ES
,
Monpellier
VM
,
Eland
I
,
Tromp
E
,
van Ramshorst
B
.
Nutritional deficiencies in gastric bypass patients; incidence, time of occurrence and implications for post-operative surveillance
.
Obes Surg
.
2015
;
25
(
5
):
818
23
.
135.
Duran
İD
,
Gülçelik
NE
,
Bulut
B
,
Balcı
Z
,
Berker
D
,
Güler
S
.
Differences in calcium metabolism and thyroid physiology after sleeve gastrectomy and Roux-En-Y gastric bypass
.
Obes Surg
.
2019
;
29
(
2
):
705
12
.
136.
Pilone
V
,
Tramontano
S
,
Cutolo
C
,
Marchese
F
,
Pagano
AM
,
Di Spirito
F
.
Clinical factors correlated with vitamin D deficiency in patients with obesity scheduled for bariatric surgery: a single center experience
.
Int J Vitam Nutr Res
.
2020
90
3–4
346
52
.
137.
Kessler
Y
,
Adelson
D
,
Mardy-Tilbor
L
,
Ben-Porat
T
,
Szold
A
,
Goitein
D
.
Nutritional status following one anastomosis gastric bypass
.
Clin Nutr
.
2020
;
39
(
2
):
599
605
.
138.
Almesri
N
,
Das
NS
,
Ali
ME
,
Gumaa
K
,
Giha
HA
.
Gender-Dependent association of vitamin D deficiency with obesity and hypercholesterolemia (LDLC) in adults
.
Endocr Metab Disord Drug Targets
.
2020
;
20
(
3
):
425
36
.
139.
Lin
E
,
Armstrong-Moore
D
,
Liang
Z
,
Sweeney
JF
,
Torres
WE
,
Ziegler
TR
.
Contribution of adipose tissue to plasma 25-hydroxyvitamin D concentrations during weight loss following gastric bypass surgery
.
Obesity
.
2011
;
19
(
3
):
588
94
.
140.
Moizé
V
,
Andreu
A
,
Flores
L
,
Torres
F
,
Ibarzabal
A
,
Delgado
S
.
Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a mediterranean population
.
J Acad Nutr Diet
.
2013
;
113
(
3
):
400
10
.
141.
Nath
A
,
Shope
TR
,
Brebbia
JS
,
Koch
TR
.
Bowel symptoms are associated with hypovitaminosis D in individuals with medically complicated obesity
.
Nutr Res
.
2019
;
63
:
70
5
.
142.
Wang
C
,
Guan
B
,
Yang
W
,
Yang
J
,
Cao
G
,
Lee
S
.
Prevalence of electrolyte and nutritional deficiencies in Chinese bariatric surgery candidates
.
Surg Obes Relat Dis
.
2016
;
12
(
3
):
629
34
.
143.
Peterson
LA
,
Cheskin
LJ
,
Schweitzer
MA
,
Magnuson
TH
,
Steele
KE
.
Treatment for vitamin D deficiency prior to bariatric surgery: a prospective cohort study
.
Obes Surg
.
2016
;
26
(
5
):
1146
9
.
144.
Rajabi
S
,
Aghamohammadi
V
,
Moradpour
G
,
Amini
M
,
Hosseini
SV
,
Sobhani
Z
.
Vitamin D status in patients with morbid obesity following bariatric surgery in shiraz, Iran: a retrospective observational study
.
Bariatr Surg Pract Patient Care
.
2022
;
17
(
2
):
121
6
.
145.
Webb
AR
,
Kazantzidis
A
,
Kift
RC
,
Farrar
MD
,
Wilkinson
J
,
Rhodes
LE
.
Colour counts: sunlight and skin type as drivers of vitamin D deficiency at UK latitudes
.
Nutrients
.
2018
;
10
(
4
):
457
.
146.
Jääskeläinen
T
,
Itkonen
ST
,
Lundqvist
A
,
Erkkola
M
,
Koskela
T
,
Lakkala
K
.
The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data
.
Am J Clin Nutr
.
2017
;
105
(
6
):
1512
20
.
147.
Brandão-Lima
PN
,
Santos
BC
,
Aguilera
CM
,
Freire
ARS
,
Martins-Filho
PRS
,
Pires
LV
.
Vitamin D food fortification and nutritional status in children: a systematic review of randomized controlled trials
.
Nutrients
.
2019
;
11
(
11
):
2766
.
148.
Kiely
M
,
Cashman
K
,
bulletin
OCJN
.
The ODIN project: development of food-based approaches for prevention of vitamin D deficiency throughout life
.
Nutr Bull
.
2015
;
40
(
3
):
235
46
.
149.
Nikooyeh
B
,
Zargaraan
A
,
Kalayi
A
,
Shariatzadeh
N
,
Zahedirad
M
,
Jamali
A
.
Vitamin D-fortified cooking oil is an effective way to improve vitamin D status: an institutional efficacy trial
.
Eur J Nutr
.
2020
;
59
(
6
):
2547
55
.
150.
Laleye
LC
,
Wasesa
AAH
,
Rao
MV
.
A study on vitamin D and vitamin A in milk and edible oils available in the United Arab Emirates
.
Int J Food Sci Nutr
.
2009
60
Suppl 5
1
9
.
151.
Jan
Y
,
Malik
M
,
Yaseen
M
,
Ahmad
S
,
Imran
M
,
Rasool
S
.
Vitamin D fortification of foods in India: present and past scenario
.
J Steroid Biochem Mol Biol
.
2019
;
193
:
105417
.
152.
Lips
P
,
Cashman
KD
,
Lamberg-Allardt
C
,
Bischoff-Ferrari
HA
,
Obermayer-Pietsch
B
,
Bianchi
ML
.
Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society
.
Eur J Endocrinol
.
2019
180
4
P23
54
.
153.
Karamizadeh
M
,
Seif
M
,
Holick
MF
,
Akbarzadeh
M
.
Developing a model for prediction of serum 25-hydroxyvitamin D level: the use of linear regression and machine learning methods
.
J Am Nutr Assoc
.
2022
;
41
(
2
):
191
200
.
154.
Yang
Z
,
Laillou
A
,
Smith
G
,
Schofield
D
,
Moench-Pfanner
R
.
A review of vitamin D fortification: implications for nutrition programming in Southeast Asia
.
Food Nutr Bull
.
2013
34
2 Suppl
S81
9
.
155.
Whiting
SJ
,
Calvo
MS
.
Overview of the proceedings from experimental biology 2005 symposium: optimizing vitamin D intake for populations with special needs: barriers to effective food fortification and supplementation
.
J Nutr
.
2006
;
136
(
4
):
1114
6
.
156.
Green
RJ
,
Samy
G
,
Miqdady
MS
,
El-Hodhod
M
,
Akinyinka
OO
,
Saleh
G
.
Vitamin D deficiency and insufficiency in Africa and the Middle East, despite year-round sunny days
.
S Afr Med J
.
2015
;
105
(
7
):
603
5
.
157.
Atli
T
,
Gullu
S
,
Uysal
AR
,
Erdogan
G
.
The prevalence of vitamin D deficiency and effects of ultraviolet light on vitamin D levels in elderly Turkish population
.
Arch Gerontol Geriatr
.
2005
;
40
(
1
):
53
60
.
158.
Alagöl
F
,
Shihadeh
Y
,
Boztepe
H
,
Tanakol
R
,
Yarman
S
,
Azizlerli
H
.
Sunlight exposure and vitamin D deficiency in Turkish women
.
J Endocrinol Invest
.
2000
;
23
(
3
):
173
7
.
159.
Mishal
A
.
Effects of different dress styles on vitamin D levels in healthy young Jordanian women
.
Osteoporos Int
.
2001
;
12
(
11
):
931
5
.
160.
Van den Heuvel
E
,
van Schoor
N
,
de Jongh
RT
,
Visser
M
,
Lips
P
.
Cross-sectional study on different characteristics of physical activity as determinants of vitamin D status; inadequate in half of the population
.
Eur J Clin Nutr
.
2013
;
67
(
4
):
360
5
.
161.
Barrea
L
,
Savastano
S
,
Di Somma
C
,
Savanelli
MC
,
Nappi
F
,
Albanese
L
.
Low serum vitamin D-status, air pollution and obesity: a dangerous liaison
.
Rev Endocr Metab Disord
.
2017
;
18
(
2
):
207
14
.
162.
Nowson
CA
,
Margerison
C
.
Vitamin D intake and vitamin D status of Australians
.
Med J Aust
.
2002
;
177
(
3
):
149
52
.
163.
Malacova
E
,
Cheang
PR
,
Dunlop
E
,
Sherriff
JL
,
Lucas
RM
,
Daly
RM
.
Prevalence and predictors of vitamin D deficiency in a nationally representative sample of adults participating in the 2011-2013 Australian Health Survey
.
Br J Nutr
.
2019
;
121
(
8
):
894
904
.
164.
Cashman
KD
,
Dowling
KG
,
Škrabáková
Z
,
Gonzalez-Gross
M
,
Valtueña
J
,
De Henauw
S
.
Vitamin D deficiency in Europe: pandemic
.
Am J Clin Nutr
.
2016
;
103
(
4
):
1033
44
.
165.
Cashman
KD
.
Vitamin D deficiency: defining, prevalence, causes, and strategies of addressing
.
Calcif Tissue Int
.
2020
;
106
(
1
):
14
29
.
166.
Nasimi
N
,
Sohrabi
Z
,
Dabbaghmanesh
MH
,
Eskandari
MH
,
Bedeltavana
A
,
Famouri
M
.
A novel fortified dairy product and sarcopenia measures in sarcopenic older adults: a double-blind randomized controlled trial
.
J Am Med Dir Assoc
.
2021
;
22
(
4
):
809
15
.
167.
Steingrimsdottir
L
,
Gunnarsson
O
,
Indridason
OS
,
Franzson
L
,
Sigurdsson
G
.
Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake
.
JAMA
.
2005
;
294
(
18
):
2336
41
.
168.
Andersen
R
,
Mølgaard
C
,
Skovgaard
LT
,
Brot
C
,
Cashman
KD
,
Jakobsen
J
.
Pakistani immigrant children and adults in Denmark have severely low vitamin D status
.
Eur J Clin Nutr
.
2008
;
62
(
5
):
625
34
.
169.
Van Der Meer
IM
,
Boeke
AJP
,
Lips
P
,
Grootjans-Geerts
I
,
Wuister
JD
,
Devillé
WLJM
.
Fatty fish and supplements are the greatest modifiable contributors to the serum 25-hydroxyvitamin D concentration in a multiethnic population
.
Clin Endocrinol
.
2008
;
68
(
3
):
466
72
.
170.
van der Meer
IM
,
Karamali
NS
,
Boeke
AJP
,
Lips
P
,
Middelkoop
BJC
,
Verhoeven
I
.
High prevalence of vitamin D deficiency in pregnant non-Western women in The Hague, Netherlands
.
Am J Clin Nutr
.
2006
;
84
(
2
):
350
3
; quiz 468-9.
171.
Meyer
HE
,
Falch
JA
,
Søgaard
AJ
,
Haug
E
.
Vitamin D deficiency and secondary hyperparathyroidism and the association with bone mineral density in persons with Pakistani and Norwegian background living in Oslo, Norway: the Oslo Health Study
.
Bone
.
2004
;
35
(
2
):
412
7
.
172.
Islam
MZ
,
Viljakainen
HT
,
Kärkkäinen
MUM
,
Saarnio
E
,
Laitinen
K
,
Lamberg-Allardt
C
.
Prevalence of vitamin D deficiency and secondary hyperparathyroidism during winter in pre-menopausal Bangladeshi and Somali immigrant and ethnic Finnish women: associations with forearm bone mineral density
.
Br J Nutr
.
2012
;
107
(
2
):
277
83
.
173.
Van der Meer
IM
,
Middelkoop
BJC
,
Boeke
AJP
,
Lips
P
.
Prevalence of vitamin D deficiency among Turkish, Moroccan, Indian and sub-Sahara African populations in Europe and their countries of origin: an overview
.
Osteoporos Int
.
2011
;
22
(
4
):
1009
21
.
174.
Hilger
J
,
Friedel
A
,
Herr
R
,
Rausch
T
,
Roos
F
,
Wahl
DA
.
A systematic review of vitamin D status in populations worldwide
.
Br J Nutr
.
2014
;
111
(
1
):
23
45
.
175.
Prentice
A
.
Vitamin D deficiency: a global perspective
.
Nutr Rev
.
2008
66
10 Suppl 2
S153
64
.
176.
Paik
HY
.
Dietary reference intakes for Koreans (KDRIs)
.
Asia Pac J Clin Nutr
.
2008
17
Suppl 2
416
9
.
177.
Cooper
C
,
Campion
G
,
Melton
L
3rd
.
Hip fractures in the elderly: a world-wide projection
.
Osteoporos Int
.
1992
;
2
(
6
):
285
9
.
178.
Hamoui
N
,
Anthone
G
,
Crookes
PF
.
Calcium metabolism in the morbidly obese
.
Obes Surg
.
2004
;
14
(
1
):
9
12
.
179.
El-Kadre
LJ
,
Rocha
PRS
,
de Almeida Tinoco
AC
,
Tinoco
RC
.
Calcium metabolism in pre-and postmenopausal morbidly obese women at baseline and after laparoscopic Roux-en-Y gastric bypass
.
Obes Surg
.
2004
;
14
(
8
):
1062
6
.
180.
Ghoghaei
M
,
Taghdiri
F
,
Khajeh
E
,
Azmoudeh Ardalan
F
,
Sedaghat
M
,
Hosseini Shirvani
S
.
Parathyroid hormone levels may predict nonalcoholic steatohepatitis in morbidly obese patients
.
Hepat Mon
.
2015
;
15
(
7
):
e29697
.
181.
Balk
E
,
Adam
GP
,
Langberg
VN
,
Earley
A
,
Clark
P
,
Ebeling
PR
.
Global dietary calcium intake among adults: a systematic review
.
Osteoporos Int
.
2017
;
28
(
12
):
3315
24
.
182.
Cormick
G
,
Belizán
JMJN
.
Calcium intake and health
.
Nutrients
.
2019
;
11
(
7
):
1606
.
183.
Smith
FJ
,
Holman
CDJ
,
Moorin
RE
,
Fletcher
DR
.
Incidence of bariatric surgery and postoperative outcomes: a population-based analysis in Western Australia
.
Med J Aust
.
2008
;
189
(
4
):
198
202
.
184.
Guerrero-Romero
F
,
Flores-García
A
,
Saldaña-Guerrero
S
,
Simental-Mendía
LE
,
Rodríguez-Morán
M
.
Obesity and hypomagnesemia
.
Eur J Intern Med
.
2016
;
34
:
29
33
.