Introduction: This study aimed to evaluate AI-based chatbots (GPT, DeepSeek, Copilot, Gemini) in disseminating information on liver cancer, emphasizing content quality, adherence to established guidelines, and ease of comprehension. Methods: Between January and February 2025, four chatbots were examined using publicly accessible free versions lacking independent reasoning capabilities. Three frequently searched Google Trends questions (“What is liver cancer awareness?,” “What are the symptoms of liver cancer?”, and “Is liver cancer treatable?”) were posed. Their responses were assessed via the DISCERN instrument, Coleman-Liau Index, Patient Education Materials Assessment Tool for Print, and alignment with American Association for the Study of Liver Diseases, National Comprehensive Cancer Network, and European Society for Medical Oncology recommendations. Statistical analysis was performed using SPSS 22. Results: All chatbots largely provided relevant and impartial information. GPT and DeepSeek scored lower on specifying information sources and update timelines, whereas Copilot omitted local therapies (e.g., radiofrequency ablation, transarterial chemoembolization, transarterial radioembolization), resulting in reduced scientific accuracy. Gemini and Copilot performed better in “understandability,” while GPT and DeepSeek excelled in “actionability.” Although GPT demonstrated consistency across multiple treatment options, it did not explicitly reference international guidelines. Study limitations included language constraints, variations in chatbot updates, and reliance on a single inquiry round. Conclusions: AI chatbots show potential as initial informational tools for liver cancer but cannot replace professional medical consultation. In complex diseases requiring multidisciplinary management, frequent guideline-based updates, expert validation, and diverse data sources are critical to enhancing clinical relevance and patient outcomes.

1.
Toh
MR
,
Wong
EYT
,
Wong
SH
,
Ng
AWT
,
Loo
LH
,
Chow
PKH
, et al
.
Global epidemiology and genetics of hepatocellular carcinoma
.
Gastroenterology
.
2023
;
164
(
5
):
766
82
.
2.
Shiani
A
,
Narayanan
S
,
Pena
L
,
Friedman
M
.
The role of diagnosis and treatment of underlying liver disease for the prognosis of primary liver cancer
.
Cancer Control
.
2017
;
24
(
3
):
1073274817729240
.
3.
Nevola
R
,
Rinaldi
L
,
Giordano
M
,
Marrone
A
,
Adinolfi
LE
.
Mechanisms and clinical behavior of hepatocellular carcinoma in HBV and HCV infection and alcoholic and non-alcoholic fatty liver disease
.
Hepatoma Res
.
2018
;
4
(
9
):
55
.
4.
Mitra
S
,
De
A
,
Chowdhury
A
.
Epidemiology of non-alcoholic and alcoholic fatty liver diseases
.
Transl Gastroenterol Hepatol
.
2020
;
5
:
16
.
5.
Zhou
J
,
Sun
H
,
Wang
Z
,
Cong
W
,
Wang
J
,
Zeng
M
, et al
.
Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition)
.
Liver Cancer
.
2020
;
9
(
6
):
682
720
.
6.
Lee
D
,
Yoon
SN
.
Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges
.
Int J Environ Res Public Health
.
2021
;
18
(
1
):
271
.
7.
Xu
L
,
Sanders
L
,
Li
K
,
Chow
JC
.
Chatbot for health care and oncology applications using artificial intelligence and machine learning: systematic review
.
JMIR Cancer
.
2021
;
7
(
4
):
e27850
.
8.
Lenaerts
G
,
Bekkering
GE
,
Goossens
M
,
De Coninck
L
,
Delvaux
N
,
Cordyn
S
, et al
.
Tools to assess the trustworthiness of evidence-based point-of-care information for health care professionals: systematic review
.
J Med Internet Res
.
2020
;
22
(
1
):
e15415
.
9.
Graf
EM
,
McKinney
JA
,
Dye
AB
,
Lin
L
,
Sanchez-Ramos
L
.
Exploring the limits of artificial intelligence for referencing scientific articles
.
Am J Perinatol
.
2024
;
41
(
15
):
2072
81
.
10.
Heimbach
JK
,
Kulik
LM
,
Finn
RS
,
Sirlin
CB
,
Abecassis
MM
,
Roberts
LR
, et al
.
AASLD guidelines for the treatment of hepatocellular carcinoma
.
Hepatology
.
2018
;
67
(
1
):
358
80
.
11.
Benson
AB
,
D’Angelica
MI
,
Abbott
DE
,
Anaya
DA
,
Anders
R
,
Are
C
, et al
.
Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology
.
J Natl Compr Canc Netw
.
2021
;
19
(
5
):
541
65
.
12.
Vogel
A
,
Cervantes
A
,
Chau
I
,
Daniele
B
,
Llovet
JM
,
Meyer
T
, et al
.
Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2018
;
29
(
Suppl 4
):
iv238
55
.
13.
Tellapuri
S
,
Sutphin
PD
,
Beg
MS
,
Singal
AG
,
Kalva
SP
.
Staging systems of hepatocellular carcinoma: a review
.
Indian J Gastroenterol
.
2018
;
37
(
6
):
481
91
.
14.
Derevianchenko
N
,
Lytovska
O
,
Diurba
D
,
Leshchyna
I
.
Impact of medical terminology on patients’ comprehension of healthcare
.
Georgian Med News
.
2018
;
284
:
159
63
.
15.
Gibson
D
,
Jackson
S
,
Shanmugasundaram
R
,
Seth
I
,
Siu
A
,
Ahmadi
N
, et al
.
Evaluating the efficacy of ChatGPT as a patient education tool in prostate cancer: multimetric assessment
.
J Med Internet Res
.
2024
;
26
:
e55939
.
16.
Chen
D
,
Parsa
R
,
Hope
A
,
Hannon
B
,
Mak
E
,
Eng
L
, et al
.
Physician and artificial intelligence chatbot responses to cancer questions from social media
.
JAMA Oncol
.
2024
;
10
(
7
):
956
60
.
17.
Teufel
A
,
Itzel
T
,
Zimmermann
A
,
Dumitrascu
D
,
Bugianesi
E
,
Valenti
L
, et al
.
Evaluation of Google search trends for liver diseases in europe
.
J Gastrointestin Liver Dis
.
2024
;
33
(
2
):
234
44
.
18.
Musheyev
D
,
Pan
A
,
Gross
P
,
Kamyab
D
,
Kaplinsky
P
,
Spivak
M
, et al
.
Readability and information quality in cancer information from a free vs paid chatbot
.
JAMA Netw Open
.
2024
;
7
(
7
):
e2422275
.
19.
Warren
CJ
,
Edmonds
VS
,
Payne
NG
,
Voletti
S
,
Wu
SY
,
Colquitt
J
, et al
.
Prompt matters: evaluation of large language model chatbot responses related to Peyronie’s disease
.
Sex Med
.
2024
;
12
(
4
):
qfae055
.
20.
Powell
LE
,
Andersen
ES
,
Pozez
AL
.
Assessing readability of patient education materials on breast reconstruction by major US academic hospitals as compared with nonacademic sites
.
Ann Plast Surg
.
2021
;
86
(
6
):
610
4
.
21.
Laymouna
M
,
Ma
Y
,
Lessard
D
,
Schuster
T
,
Engler
K
,
Lebouché
B
.
Roles, users, benefits, and limitations of chatbots in health care: rapid review
.
J Med Internet Res
.
2024
;
26
:
e56930
.
22.
Hayat
J
,
Lari
M
,
AlHerz
M
,
Lari
A
.
The utility and limitations of artificial intelligence-powered chatbots in healthcare
.
Cureus
.
2024
;
16
(
11
):
e73127
.
23.
Yang
HS
,
Wang
F
,
Greenblatt
MB
,
Huang
SX
,
Zhang
Y
.
AI chatbots in clinical laboratory medicine: foundations and trends
.
Clin Chem
.
2023
;
69
(
11
):
1238
46
.
24.
Clark
M
,
Bailey
S
.
Chatbots in health care: connecting patients to information: emerging health technologies
.
2024
.
25.
Hindelang
M
,
Sitaru
S
,
Zink
A
.
Transforming health care through chatbots for medical history-taking and future directions: comprehensive systematic review
.
JMIR Med Inform
.
2024
;
12
(
1
):
e56628
.
26.
Shiferaw
MW
,
Zheng
T
,
Winter
A
,
Mike
LA
,
Chan
LN
.
Assessing the accuracy and quality of artificial intelligence (AI) chatbot-generated responses in making patient-specific drug-therapy and healthcare-related decisions
.
BMC Med Inform Decis Mak
.
2024
;
24
(
1
):
404
.
27.
Morita
PP
,
Lotto
M
,
Kaur
J
,
Chumachenko
D
,
Oetomo
A
,
Espiritu
KD
, et al
.
What is the impact of artificial intelligence-based chatbots on infodemic management
.
Front Public Health
.
2024
;
12
:
1310437
.
28.
Mauro
E
,
Forner
A
.
Barcelona Clinic Liver Cancer 2022 update: linking prognosis prediction and evidence-based treatment recommendation with multidisciplinary clinical decision-making
.
Liver Int
.
2022
;
42
(
3
):
488
91
.
29.
Stiller
C
,
Brandt
L
,
Adams
M
,
Gura
N
.
Improving the readability of patient education materials in physical therapy
.
Cureus
.
2024
;
16
(
2
):
e54525
.
30.
Chen
D
,
Huang
RS
,
Jomy
J
,
Wong
P
,
Yan
M
,
Croke
J
, et al
.
Performance of multimodal artificial intelligence chatbots evaluated on clinical oncology cases
.
JAMA Netw Open
.
2024
;
7
(
10
):
e2437711
.
31.
Wang
A
,
Qian
Z
,
Briggs
L
,
Cole
AP
,
Reis
LO
,
Trinh
QD
.
The use of chatbots in oncological care: a narrative review
.
Int J Gen Med
.
2023
;
16
:
1591
602
.
32.
McLean
AL
,
Hristidis
V
.
Evidence-based analysis of AI chatbots in oncology patient education: implications for trust, perceived realness, and misinformation management
.
J Cancer Educ
.
2024
;
39
(
2
):
123
34
.
33.
Krishnan
G
,
Singh
S
,
Pathania
M
,
Gosavi
S
,
Abhishek
S
,
Parchani
A
, et al
.
Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm
.
Front Artif Intell
.
2023
;
6
:
1227091
.
You do not currently have access to this content.