Introduction: Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with lymph node metastasis (LNM) being an independent prognostic factor. However, there are still challenges in the pathological diagnosis of LNM in GC. The aim of this meta-analysis was to systematically evaluate the accuracy of artificial intelligence (AI) in detecting LNM in GC from whole-slide pathological images. Methods: As of March 24, 2024, a comprehensive search for studies on the pathological diagnosis of GC LNM AI was performed in the databases of PubMed, Web of Science, Cochrane Library, and CNKI. Meta-analysis of the included data was performed using Meta-DiSc 1.4, Review Manager 5.4, and Stata SE 17.0 software to calculate diagnostic metrics such as overall sensitivity and specificity. The overall diagnostic performance of the AI was assessed. Meta-regression analysis explored sources of heterogeneity. Results: A total of 7 articles involving 1,669 GC patients were included. The analysis showed that AI had a sensitivity of 0.90 (95% CI: 0.84–0.94) and a specificity of 0.95 (95% CI: 0.91–0.98) for the diagnosis of GC LNM, with significant heterogeneity across studies. The area under the curve was 0.97, indicating an excellent diagnostic value. Meta-regression analysis showed that the sample size and the number of study centers contributed to the heterogeneity. Conclusion: AI for diagnosing LNM in GC from whole-slide pathological images demonstrates high accuracy, offering significant clinical implications for improving diagnosis and treatment strategies.

1.
Smyth
EC
,
Nilsson
M
,
Grabsch
HI
,
van Grieken
NC
,
Lordick
F
.
Gastric cancer
.
Lancet
.
2020
;
396
(
10251
):
635
48
.
2.
Wang
H
,
Yin
X
,
Lou
SH
,
Fang
TY
,
Han
BL
,
Gao
JL
, et al
.
Metastatic lymph nodes and prognosis assessed by the number of retrieved lymph nodes in gastric cancer
.
World J Gastrointest Surg
.
2022
;
14
(
11
):
1230
49
.
3.
Komura
D
,
Ishikawa
S
.
Machine learning methods for histopathological image analysis
.
Comput Struct Biotechnol J
.
2018
;
16
:
34
42
.
4.
Niazi
MKK
,
Parwani
AV
,
Gurcan
MN
.
Digital pathology and artificial intelligence
.
Lancet Oncol
.
2019
;
20
(
5
):
e253
261
.
5.
Martos
O
,
Hoque
MZ
,
Keskinarkaus
A
,
Kemi
N
,
Näpänkangas
J
,
Eskuri
M
, et al
.
Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal
.
Pathol Res Pract
.
2023
;
248
:
154694
.
6.
Jiang
Y
,
Yang
M
,
Wang
S
,
Li
X
,
Sun
Y
.
Emerging role of deep learning-based artificial intelligence in tumor pathology
.
Cancer Commun
.
2020
;
40
(
4
):
154
66
.
7.
Ehteshami Bejnordi
B
,
Veta
M
,
Johannes van Diest
P
,
van Ginneken
B
,
Karssemeijer
N
,
Litjens
G
, et al
.
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
.
Jama
.
2017
;
318
(
22
):
2199
210
.
8.
Wu
S
,
Hong
G
,
Xu
A
,
Zeng
H
,
Chen
X
,
Wang
Y
, et al
.
Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study
.
Lancet Oncol
.
2023
;
24
(
4
):
360
70
.
9.
Shen
D
,
Wu
G
,
Suk
HI
.
Deep learning in medical image analysis
.
Annu Rev Biomed Eng
.
2017
;
19
:
221
48
.
10.
Zunair
H
,
Ben Hamza
A
.
Sharp U-Net: depthwise convolutional network for biomedical image segmentation
.
Comput Biol Med
.
2021
;
136
:
104699
.
11.
Yasuda
Y
,
Tokunaga
K
,
Koga
T
,
Sakamoto
C
,
Goldberg
IG
,
Saitoh
N
, et al
.
Computational analysis of morphological and molecular features in gastric cancer tissues
.
Cancer Med
.
2020
;
9
(
6
):
2223
34
.
12.
Page
MJ
,
McKenzie
JE
,
Bossuyt
PM
,
Boutron
I
,
Hoffmann
TC
,
Mulrow
CD
, et al
.
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
.
BMJ
.
2021
;
372
:
n71
.
13.
Wu
XL
,
Tu
Q
,
Faure
G
,
Gallet
P
,
Kohler
C
,
Bittencourt
MDC
.
Diagnostic and prognostic value of circulating tumor cells in head and neck squamous cell carcinoma: a systematic review and meta-analysis
.
Sci Rep
.
2016
;
6
:
20210
.
14.
Whiting
PF
,
Rutjes
AW
,
Westwood
ME
,
Mallett
S
,
Deeks
JJ
,
Reitsma
JB
, et al
.
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
.
Ann Intern Med
.
2011
;
155
(
8
):
529
36
.
15.
Zamora
J
,
Abraira
V
,
Muriel
A
,
Khan
K
,
Coomarasamy
A
.
Meta-DiSc: a software for meta-analysis of test accuracy data
.
BMC Med Res Methodol
.
2006
;
6
:
31
.
16.
Lee
J
,
Cha
S
,
Kim
J
,
Kim
JJ
,
Kim
N
,
Jae Gal
SG
, et al
.
Ensemble deep learning model to predict lymphovascular invasion in gastric cancer
.
Cancers
.
2024
;
16
(
2
):
430
.
17.
Hu
Y
,
Su
F
,
Dong
K
,
Wang
X
,
Zhao
X
,
Jiang
Y
, et al
.
Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images
.
Gastric Cancer
.
2021
;
24
(
4
):
868
77
.
18.
Wang
X
,
Chen
Y
,
Gao
Y
,
Zhang
H
,
Guan
Z
,
Dong
Z
, et al
.
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
.
Nat Commun
.
2021
;
12
(
1
):
1637
.
19.
Huang
SC
,
Chen
CC
,
Lan
J
,
Hsieh
TY
,
Chuang
HC
,
Chien
MY
, et al
.
Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings
.
Nat Commun
.
2022
;
13
(
1
):
3347
.
20.
Matsushima
J
,
Sato
T
,
Ohnishi
T
,
Yoshimura
Y
,
Mizutani
H
,
Koto
S
, et al
.
The use of deep learning-based computer diagnostic algorithm for detection of lymph node metastases of gastric adenocarcinoma
.
Int J Surg Pathol
.
2023
;
31
(
6
):
975
81
.
21.
Zhao
Y
,
Li
L
,
Han
K
,
Li
T
,
Duan
J
,
Sun
Q
, et al
.
A radio-pathologic integrated model for prediction of lymph node metastasis stage in patients with gastric cancer
.
Abdom Radiol
.
2023
;
48
(
11
):
3332
42
.
22.
Wang
SZ
,
Wang
JG
,
Lu
Y
,
Zhang
YJ
,
Xin
FJ
,
Liu
SL
, et al
.
Clinical application of convolutional neural network in pathological diagnosis of metastatic lymph nodes of gastric cancer
.
Zhonghua Wai Ke Za Zhi
.
2019
;
57
(
12
):
934
8
.
23.
Machlowska
J
,
Baj
J
,
Sitarz
M
,
Maciejewski
R
,
Sitarz
R
.
Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies
.
Int J Mol Sci
.
2020
;
21
(
11
):
4012
.
24.
Sun
D
,
Xu
H
,
Huang
J
.
[Prognostic factors of lymph node-negative metastasis gastric cancer]
.
Zhonghua Wei Chang Wai Ke Za Zhi
.
2017
;
20
(
2
):
190
4
.
25.
Shiraishi
N
,
Sato
K
,
Yasuda
K
,
Inomata
M
,
Kitano
S
.
Multivariate prognostic study on large gastric cancer
.
J Surg Oncol
.
2007
;
96
(
1
):
14
8
.
26.
Japanese Gastric Cancer
A
.
Japanese classification of gastric carcinoma - 2nd English edition
.
Gastric Cancer
.
1998
;
1
(
1
):
10
24
.
27.
Kiremitçi
S
,
Cansız Ersöz
C
,
Savaş
B
,
Ensari
A
.
Gastric and small intestinal traditional serrated adenomas: a detailed morphologic and immunohistochemical analysis
.
Turk J Gastroenterol
.
2020
;
31
(
6
):
441
50
.
28.
Yamamoto
A
,
Shoda
K
,
Kawaguchi
Y
,
Akaike
H
,
Saito
R
,
Ashizawa
N
, et al
.
Prognostic impact of lymph node micrometastasis in patients with gastric cancer
.
Surg Today
.
2022
;
52
(
1
):
61
8
.
29.
Matsuoka
T
,
Yashiro
M
.
Biomarkers of gastric cancer: current topics and future perspective
.
World J Gastroenterol
.
2018
;
24
(
26
):
2818
32
.
30.
Stathonikos
N
,
van Varsseveld
NC
,
Vink
A
,
van Dijk
MR
,
Nguyen
TQ
,
Leng
WWJ
, et al
.
Digital pathology in the time of corona
.
J Clin Pathol
.
2020
;
73
(
11
):
706
12
.
31.
Basak
K
,
Ozyoruk
KB
,
Demir
D
.
Whole slide images in artificial intelligence applications in digital pathology: challenges and pitfalls
.
Turk Patoloji Derg
.
2023
;
39
(
2
):
101
8
.
32.
Wu
S
,
Hong
G
,
Xu
A
,
Zeng
H
,
Chen
X
,
Wang
Y
, et al
.
Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study
.
Lancet Oncol
.
2023
;
24
(
4
):
360
70
.
33.
Pan
J
,
Hong
G
,
Zeng
H
,
Liao
C
,
Li
H
,
Yao
Y
, et al
.
An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer
.
J Transl Med
.
2023
;
21
(
1
):
42
.
34.
Al-Janabi
S
,
Huisman
A
,
Van Diest
PJ
.
Digital pathology: current status and future perspectives
.
Histopathology
.
2012
;
61
(
1
):
1
9
.
35.
Wang
N
,
Huo
X
,
Zhang
B
,
Chen
X
,
Zhao
S
,
Shi
X
, et al
.
METTL3-Mediated ADAMTS9 suppression facilitates angiogenesis and carcinogenesis in gastric cancer
.
Front Oncol
.
2022
;
12
:
861807
.
36.
HajiEsmailPoor
Z
,
Tabnak
P
,
Baradaran
B
,
Pashazadeh
F
,
Aghebati-Maleki
L
.
Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis
.
Front Oncol
.
2023
;
13
:
1185663
.
37.
Beuque
M
,
Magee
DR
,
Chatterjee
A
,
Woodruff
HC
,
Langley
RE
,
Allum
W
, et al
.
Automated detection and delineation of lymph nodes in haematoxylin & eosin stained digitised slides
.
J Pathol Inform
.
2023
;
14
:
100192
.
38.
Chen
Y
,
Sun
Z
,
Chen
W
,
Liu
C
,
Chai
R
,
Ding
J
, et al
.
The immune subtypes and landscape of gastric cancer and to predict based on the whole-slide images using deep learning
.
Front Immunol
.
2021
;
12
:
685992
.
39.
Wu
L
,
Shang
R
,
Sharma
P
,
Zhou
W
,
Liu
J
,
Yao
L
, et al
.
Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial
.
Lancet Gastroenterol Hepatol
.
2021
;
6
(
9
):
700
8
.
40.
Skrede
OJ
,
De Raedt
S
,
Kleppe
A
,
Hveem
TS
,
Liestøl
K
,
Maddison
J
, et al
.
Deep learning for prediction of colorectal cancer outcome: a discovery and validation study
.
Lancet
.
2020
;
395
(
10221
):
350
60
.
41.
Yu
Y
,
He
Z
,
Ouyang
J
,
Tan
Y
,
Chen
Y
,
Gu
Y
, et al
.
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study
.
EBioMedicine
.
2021
;
69
:
103460
.
42.
Rajpurkar
P
,
Chen
E
,
Banerjee
O
,
Topol
EJ
.
AI in health and medicine
.
Nat Med
.
2022
;
28
(
1
):
31
8
.
43.
Kumar
N
,
Gupta
R
,
Gupta
S
.
Whole slide imaging (WSI) in pathology: current perspectives and future directions
.
J Digit Imaging
.
2020
;
33
(
4
):
1034
40
.
44.
Litjens
G
,
Kooi
T
,
Bejnordi
BE
,
Setio
AAA
,
Ciompi
F
,
Ghafoorian
M
, et al
.
A survey on deep learning in medical image analysis
.
Med Image Anal
.
2017
;
42
:
60
88
.
You do not currently have access to this content.