Introduction: Tongue squamous cell carcinoma (TSCC) is a common malignant tumour type with aggressive invasion and a poor prognosis. To date, invasion-related gene expression signatures for the prognostic stratification of TSCC patients are unavailable in clinical practice. This study aimed to assess the impact of invasion-related genes on the prognosis of TSCC patients. Methods: We obtained mRNA profiles and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases (TCGA-TSCC and GSE41116, respectively). The TSCC samples from the TCGA-TSCC cohort were randomly divided into TCGA training and TCGA test datasets at a 7:3 ratio. Next, a disease-free survival (DFS) prognostic risk model was established on the basis of univariate and stepwise multivariate Cox regression analyses of the TCGA training cohort. Moreover, prognostic genes were screened. The model was subsequently evaluated and validated using the TCGA test and GSE41116 datasets. In addition, the prognostic genes were validated in the human TSCC cell line UM1 and the human oral keratinocyte (HOK) cell line using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Results: A total of 70 candidate genes related to invasion were identified in the TCGA-TSCC cohort. DFS data were subsequently constructed, and 6 prognostic genes, HMGN2, MYL12B, ACTB, PPP1CA, PSMB9, and IFITM3, were identified. The TSCC samples were divided into high- and low-risk groups in the TCGA training, TCGA test, and GSE41116 cohorts, respectively. In particular, patients with TSCC in the low-risk group had longer DFS than those in the high-risk group. Furthermore, qRT-PCR analysis confirmed that the expression levels of the 6 prognostic genes were significantly greater in the TSCC cell line UM1 than in the HOK cell line. Conclusion: This study identified new invasion-related target genes related to poor prognosis in TSCC patients, providing new insights into the underlying mechanisms of TSCC invasion.

1.
Bray
F
,
Ferlay
J
,
Soerjomataram
I
,
Siegel
RL
,
Torre
LA
,
Jemal
A
.
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2018
;
68
(
6
):
394
424
.
2.
Dotiwala
AK
,
Samra
NS
.
Anatomy, head and neck, tongue
.
Treasure Island (FL)
:
StatPearls Publishing
;
2023
.
3.
Su
WW
,
Su
CW
,
Chang
DC
,
Chuang
SL
,
Chen
SL
,
Hsu
CY
, et al
.
Impact of varying anatomic sites on advanced stage and survival of oral cancer: 9-year prospective cohort of 27 717 cases
.
Head Neck
.
2019
;
41
(
5
):
1475
83
.
4.
Amit
M
,
Yen
TC
,
Liao
CT
,
Chaturvedi
P
,
Agarwal
JP
,
Kowalski
LP
, et al
.
Improvement in survival of patients with oral cavity squamous cell carcinoma: an international collaborative study
.
Cancer
.
2013
;
119
(
24
):
4242
8
.
5.
van Dijk
BAC
,
Brands
MT
,
Geurts
SME
,
Merkx
MAW
,
Roodenburg
JLN
.
Trends in oral cavity cancer incidence, mortality, survival and treatment in The Netherlands
.
Int J Cancer
.
2016
;
139
(
3
):
574
83
.
6.
Valdez
JA
,
Brennan
MT
.
Impact of oral cancer on quality of life
.
Dent Clin North Am
.
2018
;
62
(
1
):
143
54
.
7.
Lopes
FF
,
da Costa Miguel
MC
,
Pereira
AL
,
da Cruz
MC
,
de Almeida Freitas
R
,
Pinto
LP
, et al
.
Changes in immunoexpression of E-cadherin and beta-catenin in oral squamous cell carcinoma with and without nodal metastasis
.
Ann Diagn Pathol
.
2009
;
13
(
1
):
22
9
.
8.
Bánkfalvi
A
,
Krassort
M
,
Végh
A
,
Felszeghy
E
,
Piffkó
J
.
Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas
.
J Oral Pathol Med
.
2002
;
31
(
8
):
450
7
.
9.
Rajendiran
S
,
Kpetemey
M
,
Maji
S
,
Gibbs
LD
,
Dasgupta
S
,
Mantsch
R
, et al
.
MIEN1 promotes oral cancer progression and implicates poor overall survival
.
Cancer Biol Ther
.
2015
;
16
(
6
):
876
85
.
10.
Kumar
VB
,
Lin
SH
,
Mahalakshmi
B
,
Lo
YS
,
Lin
CC
,
Chuang
YC
, et al
.
Sodium danshensu inhibits oral cancer cell migration and invasion by modulating p38 signaling pathway
.
Front Endocrinol
.
2020
;
11
:
568436
.
11.
Velmurugan
BK
,
Lin
JT
,
Mahalakshmi
B
,
Chuang
YC
,
Lin
CC
,
Lo
YS
, et al
.
Luteolin-7-O-Glucoside inhibits oral cancer cell migration and invasion by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway
.
Biomolecules
.
2020
;
10
(
4
):
502
.
12.
Wilkerson
MD
,
Hayes
DN
.
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking
.
Bioinformatics
.
2010
;
26
(
12
):
1572
3
.
13.
Lin
S
,
Xu
H
,
Zhang
A
,
Ni
Y
,
Xu
Y
,
Meng
T
, et al
.
Prognosis analysis and validation of m6A signature and tumor immune microenvironment in glioma
.
Front Oncol
.
2020
;
10
:
541401
.
14.
Ritchie
ME
,
Phipson
B
,
Wu
D
,
Hu
Y
,
Law
CW
,
Shi
W
, et al
.
Limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
.
15.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
16.
Yu
G
,
Wang
LG
,
Han
Y
,
He
QY
.
clusterProfiler: an R package for comparing biological themes among gene clusters
.
OMICS
.
2012
;
16
(
5
):
284
7
.
17.
Liu
TT
,
Li
R
,
Huo
C
,
Li
JP
,
Yao
J
,
Ji
XL
, et al
.
Identification of CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer analysis
.
Front Cell Dev Biol
.
2021
;
9
:
682002
.
18.
Sticht
C
,
De La Torre
C
,
Parveen
A
,
Gretz
N
.
miRWalk: an online resource for prediction of microRNA binding sites
.
PLoS One
.
2018
;
13
(
10
):
e0206239
.
19.
Li
JH
,
Liu
S
,
Zhou
H
,
Qu
LH
,
Yang
JH
.
starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
.
Nucleic Acids Res
.
2014
;
42
(
Database issue
):
D92
7
.
20.
Shannon
P
,
Markiel
A
,
Ozier
O
,
Baliga
NS
,
Wang
JT
,
Ramage
D
, et al
.
Cytoscape: a software environment for integrated models of biomolecular interaction networks
.
Genome Res
.
2003
;
13
(
11
):
2498
504
.
21.
Davis
AP
,
Wiegers
TC
,
Johnson
RJ
,
Sciaky
D
,
Wiegers
J
,
Mattingly
CJ
.
Comparative toxicogenomics database (CTD): update 2023
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D1257
62
.
22.
Robin
X
,
Turck
N
,
Hainard
A
,
Tiberti
N
,
Lisacek
F
,
Sanchez
JC
, et al
.
pROC: an open-source package for R and S+ to analyze and compare ROC curves
.
BMC Bioinformatics
.
2011
;
12
:
77
.
23.
Caldeira
PC
,
Soto
AML
,
de Aguiar
MCF
,
Martins
CC
.
Tumor depth of invasion and prognosis of early-stage oral squamous cell carcinoma: a meta-analysis
.
Oral Dis
.
2020
;
26
(
7
):
1357
65
.
24.
Wahab
A
,
Onkamo
O
,
Pirinen
M
,
Almangush
A
,
Salo
T
.
The budding and depth of invasion model in oral cancer: a systematic review and meta-analysis
.
Oral Dis
.
2022
;
28
(
2
):
275
83
.
25.
Amin
MB
,
Greene
FL
,
Edge
SB
,
Compton
CC
,
Gershenwald
JE
,
Brookland
RK
, et al
.
The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging
.
CA Cancer J Clin
.
2017
;
67
(
2
):
93
9
.
26.
Cancer Genome Atlas Network
.
Comprehensive genomic characterization of head and neck squamous cell carcinomas
.
Nature
.
2015
;
517
(
7536
):
576
82
.
27.
Schumacher
S
,
Vazquez Nunez
R
,
Biertümpfel
C
,
Mizuno
N
.
Bottom-up reconstitution of focal adhesion complexes
.
FEBS J
.
2022
;
289
(
12
):
3360
73
.
28.
Hu
A
,
Dong
X
,
Liu
X
,
Zhang
P
,
Zhang
Y
,
Su
N
, et al
.
Nucleosome-binding protein HMGN2 exhibits antitumor activity in oral squamous cell carcinoma
.
Oncol Lett
.
2014
;
7
(
1
):
115
20
.
29.
Park
I
,
Han
C
,
Jin
S
,
Lee
B
,
Choi
H
,
Kwon
JT
, et al
.
Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity
.
Biochem J
.
2011
;
434
(
1
):
171
80
.
30.
Vicente-Manzanares
M
,
Ma
X
,
Adelstein
RS
,
Horwitz
AR
.
Non-muscle myosin II takes centre stage in cell adhesion and migration
.
Nat Rev Mol Cell Biol
.
2009
;
10
(
11
):
778
90
.
31.
Guo
C
,
Liu
S
,
Wang
J
,
Sun
MZ
,
Greenaway
FT
.
ACTB in cancer
.
Clin Chim Acta
.
2013
;
417
:
39
44
.
32.
Zhang
XY
,
Li
M
,
Sun
K
,
Chen
XJ
,
Meng
J
,
Wu
L
, et al
.
Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma
.
Oncotarget
.
2015
;
6
(
1
):
101
15
.
33.
Nowak
D
,
Skwarek-Maruszewska
A
,
Zemanek-Zboch
M
,
Malicka-Błaszkiewicz
M
.
Beta-actin in human colon adenocarcinoma cell lines with different metastatic potential
.
Acta Biochim Pol
.
2005
;
52
(
2
):
461
8
.
34.
Qian
J
,
Liu
H
,
Wei
S
,
Liu
Z
,
Li
Y
,
Wang
LE
, et al
.
Association between putative functional variants in the PSMB9 gene and risk of melanoma--re-analysis of published melanoma genome-wide association studies
.
Pigment Cell Melanoma Res
.
2013
;
26
(
3
):
392
401
.
35.
Gan
CP
,
Sam
KK
,
Yee
PS
,
Zainal
NS
,
Lee
BKB
,
Abdul Rahman
ZA
, et al
.
IFITM3 knockdown reduces the expression of CCND1 and CDK4 and suppresses the growth of oral squamous cell carcinoma cells
.
Cell Oncol
.
2019
;
42
(
4
):
477
90
.
36.
Myoung
H
,
Hong
SP
,
Yun
PY
,
Lee
JH
,
Kim
MJ
.
Anti-cancer effect of genistein in oral squamous cell carcinoma with respect to angiogenesis and in vitro invasion
.
Cancer Sci
.
2003
;
94
(
2
):
215
20
.
37.
Ota
H
,
Shionome
T
,
Suguro
H
,
Saito
S
,
Ueki
K
,
Arai
Y
, et al
.
Nickel chloride administration prevents the growth of oral squamous cell carcinoma
.
Oncotarget
.
2018
;
9
(
35
):
24109
21
.
38.
Patel
BC
,
Ostwal
S
,
Sanghavi
PR
,
Joshi
G
,
Singh
R
.
Management of malignant wound myiasis with ivermectin, albendazole, and clindamycin (triple therapy) in advanced head-and-neck cancer patients: a prospective observational study
.
Indian J Palliat Care
.
2018
;
24
(
4
):
459
64
.
You do not currently have access to this content.