Introduction: Radiomics now has significant momentum in the era of precision medicine. Glioma is one of the pathologies that has been extensively evaluated by radiomics. However, this technique has not been incorporated into clinical practice. In this systematic review, we selected and reviewed the published studies about glioma grading by radiomics to evaluate this technique’s feasibility and its challenges. Material and Methods: Using seven different search strings, we considered all published English manuscripts from 2015 to September 2020 in PubMed, Embase, and Scopus databases. After implementing the exclusion and inclusion criteria, the final papers were selected for the methodological quality assessment based on our in-house Modified Radiomics Standard Scoring (RQS) containing 43 items (minimum score of 0, maximum score of 44). Finally, we offered our opinion about the challenges and weaknesses of the selected papers. Results: By our search, 1,177 manuscripts were found (485 in PubMed, 343 in Embase, and 349 in Scopus). After the implementation of inclusion and exclusion criteria, 18 papers remained for the final analysis by RQS. The total RQS score ranged from 26 (59% of maximum possible score) to 43 (97% of maximum possible score) with a mean of 33.5 (76% of maximum possible score). Conclusion: The current studies are promising but very heterogeneous in design with high variation in the radiomics software, the number of extracted features, the number of selected features, and machine learning models. All of the studies were retrospective in design; many are based on small datasets and/or suffer from class imbalance and lack of external validation data-sets.

1.
Chen
R
,
Smith-Cohn
M
,
Cohen
AL
,
Colman
H
.
Glioma Subclassifications and Their Clinical Significance
.
Neurotherapeutics
.
2017
;
14
(
2
):
284
97
. .
2.
Lin
Z
,
Yang
R
,
Li
K
,
Yi
G
,
Li
Z
,
Guo
J
,
et al
.
Establishment of age group classification for risk stratification in glioma patients
.
BMC Neurol
.
2020
;
20
(
1
):
310
. .
3.
Louis
DN
,
Perry
A
,
Reifenberger
G
,
von Deimling
A
,
Figarella-Branger
D
,
Cavenee
WK
, et al.
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary
.
Acta Neuropathol
.
2016
;
131
(
6
):
803
20
. .
4.
Louis
DN
,
Giannini
C
,
Capper
D
,
Paulus
W
,
Figarella-Branger
D
,
Lopes
MB
, et al.
cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant
.
Acta Neuropathol
.
2018
;
135
(
4
):
639
42
. .
5.
Brat
DJ
,
Aldape
K
,
Colman
H
,
Holland
EC
,
Louis
DN
,
Jenkins
RB
, et al.
cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”
.
Acta Neuropathol
.
2018
;
136
(
5
):
805
10
. .
6.
Ellison
DW
,
Hawkins
C
,
Jones
DTW
,
Onar-Thomas
A
,
Pfister
SM
,
Reifenberger
G
, et al.
cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation
.
Acta Neuropathol
.
2019
;
137
:
683
7
.
7.
Brat
DJ
,
Aldape
K
,
Colman
H
,
Figrarella-Branger
D
,
Fuller
GN
,
Giannini
C
, et al.
cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas
.
Acta Neuropathol
.
2020
;
139
(
3
):
603
8
. .
8.
Ellison
DW
,
Aldape
KD
,
Capper
D
,
Fouladi
M
,
Gilbert
MR
,
Gilbertson
RJ
, et al.
cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors
.
Brain Pathol
.
2020
;
30
(
5
):
863
6
. .
9.
Thust
SC
,
Heiland
S
,
Falini
A
,
Jager
HR
,
Waldman
AD
,
Sundgren
PC
, et al.
Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice
.
Eur Radiol
.
2018
;
28
:
3306
17
.
10.
Gui
C
,
Lau
JC
,
Kosteniuk
SE
,
Lee
DH
,
Megyesi
JF
.
Radiology reporting of low-grade glioma growth underestimates tumor expansion
.
Acta Neurochir (Wien)
.
2019
;
161
(
3
):
569
76
. .
11.
Bink
A
,
Benner
J
,
Reinhardt
J
,
De Vere-Tyndall
A
,
Stieltjes
B
,
Hainc
N
, et al.
Structured Reporting in Neuroradiology: Intracranial Tumors
.
Front Neurol
.
2018
;
9
:
32
. .
12.
Kong
Z
,
Lin
Y
,
Jiang
C
,
Li
L
,
Liu
Z
,
Wang
Y
, et al.
(18)F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma
.
Cancer Imaging
.
2019
;
19
:
58
.
13.
Lohmann
P
,
Galldiks
N
,
Kocher
M
,
Heinzel
A
,
Filss
CP
,
Stegmayr
C
, et al.
Radiomics in neuro-oncology: Basics, workflow, and applications
.
Methods
.
2020
. .
14.
Tagliafico
AS
,
Piana
M
,
Schenone
D
,
Lai
R
,
Massone
AM
,
Houssami
N
.
Overview of radiomics in breast cancer diagnosis and prognostication
.
Breast
.
2020
;
49
:
74
80
. .
15.
Schick
U
,
Lucia
F
,
Bourbonne
V
,
Dissaux
G
,
Pradier
O
,
Jaouen
V
, et al.
Use of radiomics in the radiation oncology setting: Where do we stand and what do we need?
Cancer Radiother
.
2020
;
24
(
6–7
):
755
61
. .
16.
Liu
L
,
Yi
X
,
Lu
C
,
Qi
L
,
Zhang
Y
,
Li
M
, et al.
Applications of radiomics in genitourinary tumors
.
Am J Cancer Res
.
2020
;
10
(
8
):
2293
308
.
17.
Cho
HH
,
Lee
SH
,
Kim
J
,
Park
H
.
Classification of the glioma grading using radiomics analysis
.
PeerJ
.
2018
;
6
:
e5982
. .
18.
Conti
A
,
Duggento
A
,
Indovina
I
,
Guerrisi
M
,
Toschi
N
.
Radiomics in breast cancer classification and prediction
.
Semin Cancer Biol
.
2020
. .
19.
Gu
H
,
Zhang
X
,
di Russo
P
,
Zhao
X
,
Xu
T
.
The Current State of Radiomics for Meningiomas: Promises and Challenges
.
Front Oncol
.
2020
;
10
:
567736
.
20.
Machicado
JD
,
Koay
EJ
,
Krishna
SG
.
Radiomics for the Diagnosis and Differentiation of Pancreatic Cystic Lesions
.
Diagnostics (Basel)
.
2020
;
10
.
21.
Delgadillo
R
,
Ford
JC
,
Abramowitz
MC
,
Dal Pra
A
,
Pollack
A
,
Stoyanova
R
.
The role of radiomics in prostate cancer radiotherapy
.
Strahlenther Onkol
.
2020
;
196
(
10
):
900
12
. .
22.
Lu
CF
,
Hsu
FT
,
Hsieh
KL
,
Kao
YJ
,
Cheng
SJ
,
Hsu
JB
, et al.
Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas
.
Clin Cancer Res
.
2018
;
24
(
18
):
4429
36
. .
23.
Kocher
M
,
Ruge
MI
,
Galldiks
N
,
Lohmann
P
.
Applications of radiomics and machine learning for radiotherapy of malignant brain tumors
.
Strahlenther Onkol
.
2020
;
196
(
10
):
856
67
. .
24.
Chaddad
A
,
Kucharczyk
MJ
,
Daniel
P
,
Sabri
S
,
Jean-Claude
BJ
,
Niazi
T
, et al.
Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation
.
Front Oncol
.
2019
;
9
:
374
. .
25.
Mayerhoefer
ME
,
Materka
A
,
Langs
G
,
Häggström
I
,
Szczypiński
P
,
Gibbs
P
, et al.
Introduction to Radiomics
.
J Nucl Med
.
2020
;
61
(
4
):
488
95
. .
26.
Sollini
M
,
Antunovic
L
,
Chiti
A
,
Kirienko
M
.
Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics
. Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2656–72.
27.
Cui G, Jeong J, Lei Y, Wang T, Dong X, Liu T, et al., editors. Machine-Learning-Based Classification of Low-Grade and High-Grade Glioblastoma Using Radiomic Features in Multiparametric MRI. Medical Physics; 2018: Wiley, Hoboken, NJ USA.
28.
Chen
Q
,
Wang
L
,
Wang
L
,
Deng
Z
,
Zhang
J
,
Zhu
Y
.
Glioma Grade Prediction Using Wavelet Scattering-Based Radiomics
.
IEEE Access
.
2020
;
8
:
106564
75
. .
29.
Xiao T, Hua W, Li C, Wang S, editors. Glioma Grading Prediction by Exploring Radiomics and Deep Learning Features. Proceedings of the Third International Symposium on Image Computing and Digital Medicine; 2019.
30.
Wu
Y
,
Liu
B
,
Wu
W
,
Lin
Y
,
Yang
C
,
Wang
M
.
Grading glioma by radiomics with feature selection based on mutual information
.
J Ambient Intell Human Comput
.
2018
;
9
(
5
):
1671
82
. .
31.
Vamvakas
A
,
Williams
SC
,
Theodorou
K
,
Kapsalaki
E
,
Fountas
K
,
Kappas
C
, et al.
Imaging biomarker analysis of advanced multiparametric MRI for glioma grading
.
Phys Med
.
2019
;
60
:
188
98
. .
32.
Lu
CF
,
Hsu
FT
,
Hsieh
KL
,
Kao
YJ
,
Cheng
SJ
,
Hsu
JB
, et al.
Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas
.
Clin Cancer Res
.
2018
;
24
(
18
):
4429
36
. .
33.
Hashido
T
,
Saito
S
,
Ishida
T
.
A radiomics-based comparative study on arterial spin labeling and dynamic susceptibility contrast perfusion-weighted imaging in gliomas
.
Sci Rep
.
2020
;
10
(
1
):
6121
10
. .
34.
Cho
HH
,
Lee
SH
,
Kim
J
,
Park
H
.
Classification of the glioma grading using radiomics analysis
.
PeerJ
.
2018
;
6
:
e5982
. .
35.
Lin Y, Wu Y, Pang H, Wu W, Liu T, Wang M, editors. A precise grading method for glioma based on radiomics. 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI); 2017: IEEE.
36.
Cho H-h, Park H, editors. Classification of low-grade and high-grade glioma using multi-modal image radiomics features. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2017: IEEE.
37.
Takahashi
S
,
Takahashi
W
,
Tanaka
S
,
Haga
A
,
Nakamoto
T
,
Suzuki
Y
, et al.
Radiomics analysis for glioma malignancy evaluation using diffusion kurtosis and tensor imaging
. Int J Radiat Oncol Biol Phys. 2019 Nov 15;105(4):784–
91
. .
38.
Park
YW
,
Choi
YS
,
Ahn
SS
,
Chang
JH
,
Kim
SH
,
Lee
SK
.
Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors
.
Korean J Radiol
.
2019
;
20
(
9
):
1381
9
. .
39.
Wang
Q
,
Li
Q
,
Mi
R
,
Ye
H
,
Zhang
H
,
Chen
B
, et al.
Radiomics nomogram building from multiparametric MRI to predict grade in patients with glioma: a cohort study
.
J Magn Reson Imaging
.
2019
;
49
(
3
):
825
33
. .
40.
Tian
Q
,
Yan
LF
,
Zhang
X
,
Zhang
X
,
Hu
YC
,
Han
Y
, et al.
Radiomics strategy for glioma grading using texture features from multiparametric MRI
.
J Magn Reson Imaging
.
2018
;
48
(
6
):
1518
28
. .
41.
Wu Y, Liu B, Zhao G, Yang H, Chen Y, Lv Q, et al., editors. Robust Feature Selection Method of Radiomics for Grading Glioma. The International Conference on Healthcare Science and Engineering; 2018: Springer.
42.
Gao
M
,
Huang
S
,
Pan
X
,
Liao
X
,
Yang
R
,
Liu
J
.
Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas
.
Front Oncol
.
2020
;
10
. .
43.
Çinarer
G
,
Emiroğlu
BG
,
Yurttakal
AH
.
Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features
.
Applied Sciences
.
2020
;
10
(
18
):
6296
. .
44.
Bi X, Liu JG, Cao YS, editors. Classification of Low-grade and High-grade Glioma using Multiparametric Radiomics Model. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC); 2019: IEEE.
45.
Hosny
A
,
Parmar
C
,
Quackenbush
J
,
Schwartz
LH
,
Aerts
HJWL
.
Artificial intelligence in radiology
.
Nat Rev Cancer
.
2018
;
18
(
8
):
500
10
. .
46.
Aneja
S
,
Chang
E
,
Omuro
A
.
Applications of artificial intelligence in neuro-oncology
.
Curr Opin Neurol
.
2019
;
32
(
6
):
850
6
. .
47.
Clark
K
,
Vendt
B
,
Smith
K
,
Freymann
J
,
Kirby
J
,
Koppel
P
, et al.
The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
.
J Digit Imaging
.
2013
;
26
(
6
):
1045
57
. .
48.
Scarpace L, Mikkelsen T, Cha S. Radiology Data from The Cancer Genome Atlas Glioblastoma Multiforme [TCGA-GBM] collection (2016). URL .
49.
Pedano
N
,
Flanders
AE
,
Scarpace
L
,
Mikkelsen
T
,
Eschbacher
J
,
Hermes
B
, et al.
Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection
.
The Cancer Imaging Archive
.
2016
;
2
.
50.
Bi
WL
,
Hosny
A
,
Schabath
MB
,
Giger
ML
,
Birkbak
NJ
,
Mehrtash
A
, et al.
Artificial intelligence in cancer imaging: Clinical challenges and applications
.
CA Cancer J Clin
.
2019
;
69
(
2
):
127
57
. .
51.
Lin
WJ
,
Chen
JJ
.
Class-imbalanced classifiers for high-dimensional data
.
Brief Bioinformatics
.
2013
;
14
(
1
):
13
26
. .
52.
Louis DN, Schiff D, Batchelor T, Wen PY. Classification and pathologic diagnosis of gliomas. UpToDate, Waltham, MA: Walters Kluwer Health. 2020.
53.
Rudie
JD
,
Rauschecker
AM
,
Bryan
RN
,
Davatzikos
C
,
Mohan
S
.
Emerging Applications of Artificial Intelligence in Neuro-Oncology
.
Radiology
.
2019
;
290
(
3
):
607
18
. .
54.
Thawani
R
,
McLane
M
,
Beig
N
,
Ghose
S
,
Prasanna
P
,
Velcheti
V
, et al.
Radiomics and radiogenomics in lung cancer: A review for the clinician
.
Lung Cancer
.
2018
;
115
:
34
41
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.