In the era of personalized and precision medicine, informatics technologies utilizing machine learning (ML) and quantitative imaging are witnessing a rapidly increasing role in medicine in general and in oncology in particular. This expanding role ranges from computer-aided diagnosis to decision support of treatments with the potential to transform the current landscape of cancer management. In this review, we aim to provide an overview of ML methodologies and imaging informatics techniques and their recent application in modern oncology. We will review example applications of ML in oncology from the literature, identify current challenges and highlight future potentials.

1.
T. M.
Mitchell
, et al.
, Machine learning. wcb,
1997
.
2.
Huang
SH
,
Pan
YC
.
Automated visual inspection in the semiconductor industry: A survey
.
Comput Ind
.
2015
;
66
:
1
10
. 0166-3615
3.
G. LLC
. (
2018
) Google cloud speech-to-text enables developers to convert audio to text by applying powerful neural network models in an easy to use api. [Online]. Available: https://cloud.google.com/speech-to-text/
4.
Ciocca
S
. (
2017
) How does spotify know you so well? [Online]. Available: https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
5.
Kooti
F
,
Grbovic
M
,
Aiello
LM
,
Djuric
N
,
Radosavljevic
V
,
Lerman
K
.
Analyzing uber’s ride-sharing economy
, in
Proceedings of the 26th International Conference on World Wide Web Companion
.
International World Wide Web Conferences Steering Committee
,
2017
, pp.
574
582
.
6.
Somashekhar
SP
,
Sepúlveda
MJ
,
Puglielli
S
,
Norden
AD
,
Shortliffe
EH
,
Rohit Kumar
C
, et al.
Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board
.
Ann Oncol
.
2018
Feb
;
29
(
2
):
418
23
.
[PubMed]
0923-7534
7.
——.
Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board,” Annals of Oncology, vol. 29, no. 2, pp. 418–423
.
Online (Bergh)
.
2018
; 0342-9393
8.
Esteva
A
,
Kuprel
B
,
Novoa
RA
,
Ko
J
,
Swetter
SM
,
Blau
HM
, et al.
Dermatologist-level classification of skin cancer with deep neural networks
.
Nature
.
2017
Feb
;
542
(
7639
):
115
8
.
[PubMed]
0028-0836
9.
Ehteshami Bejnordi
B
,
Veta
M
,
Johannes van Diest
P
,
van Ginneken
B
,
Karssemeijer
N
,
Litjens
G
, et al.;
the CAMELYON16 Consortium
.
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
.
JAMA
.
2017
Dec
;
318
(
22
):
2199
210
.
[PubMed]
0098-7484
10.
Cohen
JD
,
Li
L
,
Wang
Y
,
Thoburn
C
,
Afsari
B
,
Danilova
L
, et al.
Detection and localization of surgically resectable cancers with a multi-analyte blood test
.
Science
.
2018
Feb
;
359
(
6378
):
926
30
.
[PubMed]
0036-8075
11.
W. contributors. John McCarthy (computer scientist) — Wikipedia, the free encyclopedia.
2018
, [Online; accessed 16-March-2018]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=John_McCarthy_(computer_scientist)&oldid=823313442
12.
Christopher
MB
.
Pattern recognition and machine learning
.
Springer-Verlag New York
;
2016
.
13.
Michalski
RS
,
Carbonell
JG
,
Mitchell
TM
.
Machine learning: An artificial intelligence approach
.
Springer Science & Business Media
;
2013
.
14.
Jolliffe
IT
. Principal component analysis and factor analysis.
Principal component analysis
.
Springer
;
1986
. pp.
115
28
.
15.
Belkin
M
,
Niyogi
P
.
Laplacian eigenmaps for dimensionality reduction and data representation
.
Neural Comput
.
2003
;
15
(
6
):
1373
96
. 0899-7667
16.
Maaten
Ld
,
Hinton
G
.
Visualizing data using t-SNE
.
J Mach Learn Res
.
2008
;
9
(
Nov
):
2579
605
.1532-4435
17.
Tseng
HH
,
Naqa
IE
,
Chien
JT
.
Power-law stochastic neighbor embedding.
In:
2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
March 2017
, pp.
2347
2351
.
18.
Baldi
P
.
Autoencoders, unsupervised learning, and deep architectures.
In:
Proceedings of ICML Workshop on Unsupervised and Transfer Learning
,
2012
, pp.
37
49
.
19.
Dawson
LA
,
Biersack
M
,
Lockwood
G
,
Eisbruch
A
,
Lawrence
TS
,
Ten Haken
RK
.
Use of principal component analysis to evaluate the partial organ tolerance of normal tissues to radiation
.
Int J Radiat Oncol Biol Phys
.
2005
Jul
;
62
(
3
):
829
37
.
[PubMed]
0360-3016
20.
Ng
AY
,
Jordan
MI
. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In:
Dietterich
TG
,
Becker
S
,
Ghahramani
Z
, editors
.
MIT Press
.
Advances in Neural Information Processing Systems
.
Volume 14
.
2002
. pp.
841
8
. [
Online
], Available http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers\-a-comparison-of-logistic-regression-and-naive-bayes.pdf
21.
Andel
PM
. Jirí. Estimating the dimension of a linear model. engKybernetika, vol. 17, no. 6, pp. 514–525,
1981
. [Online]. Available: http://eudml.org/doc/28796
22.
Hochreiter
S
,
Schmidhuber
J
.
Long short-term memory
.
Neural Comput
.
1997
Nov
;
9
(
8
):
1735
80
.
[PubMed]
0899-7667
23.
Sarkka
S
,
Solin
A
,
Hartikainen
J
.
Spatiotemporal learning via infinite-dimensional bayesian filtering and smoothing: A look at gaussian process regression through kalman filtering
.
IEEE Signal Process Mag
.
2013
Jul
;
30
(
4
):
51
61
. 1053-5888
24.
Madhavan
P
.
Systems Analytics: Adaptive Machine Learning Workbook
. 1st ed.
USA
:
CreateSpace Independent Publishing Platform
;
2016
.
25.
Silver
D
,
Huang
A
,
Maddison
CJ
,
Guez
A
,
Sifre
L
,
van den Driessche
G
, et al.
Mastering the game of Go with deep neural networks and tree search
.
Nature
.
2016
Jan
;
529
(
7587
):
484
9
.
[PubMed]
0028-0836
26.
Bellman
R
.
A markovian decision process
.
Indiana Univ Math J
.
1957
;
6
(
4
):
679
84
. 0022-2518
27.
LeCun
Y
,
Bengio
Y
,
Hinton
G
.
Deep learning
.
Nature
.
2015
May
;
521
(
7553
):
436
44
.
[PubMed]
0028-0836
28.
Hornik
K
.
Approximation capabilities of multilayer feedforward networks
.
Neural Netw
.
1991
;
4
(
2
):
251
7
. 0893-6080
29.
Zeiler
MD
,
Fergus
R
. Visualizing and understanding convolutional networks. In:
Fleet
D
,
Pajdla
T
,
Schiele
B
,
Tuytelaars
T
, editors
.
Computer Vision – ECCV 2014
.
Cham
:
Springer International Publishing
;
2014
. pp.
818
33
.
30.
Hubel
DH
,
Wiesel
TN
.
Receptive fields and functional architecture of monkey striate cortex
.
J Physiol
.
1968
Mar
;
195
(
1
):
215
43
.
[PubMed]
0022-3751
31.
Lecun
Y
,
Bottou
L
,
Bengio
Y
,
Haffner
P
.
Gradient-based learning applied to document recognition
.
Proc IEEE
.
1998
Nov
;
86
(
11
):
2278
324
. 0018-9219
32.
Krizhevsky
A
,
Sutskever
I
,
Hinton
GE
.
ImageNet classification with deep convolutional neural networks.
In: Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012
, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
33.
Szegedy
C
,
Liu
W
,
Jia
Y
,
Sermanet
P
,
Reed
S
,
Anguelov
D
, et al.
Going deeper with convolutions.
In:
2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
June 2015
, pp.
1
9
.
34.
Simonyan
K
,
Zisserman
A
. “Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556,
2014
. [Online]. Available: http://arxiv.org/abs/1409.1556
35.
Ronneberger
O
,
Fischer
P
,
Brox
T
. U-net: Convolutional networks for biomedical image segmentation. In:
Navab
N
,
Hornegger
J
,
Wells
WM
,
Frangi
AF
, editors
.
MICCAI 2015
.
Medical Image Computing and Computer-Assisted Intervention
.
Cham
:
Springer International Publishing
;
2015
. pp.
234
41
.
36.
I.
Naqa
. A Guide to Outcome Modeling in Radiotherapy and Oncology: Listening to the Data, ser. Series in Medical Physics and Biomedical Engineering. CRC Press, Taylor & Francis Group,
2018
.
37.
Gillies
RJ
,
Kinahan
PE
,
Hricak
H
.
Radiomics: images are more than pictures, they are data
.
Radiology
.
2016
Feb
;
278
(
2
):
563
77
.
[PubMed]
0033-8419
38.
Segal
E
,
Sirlin
CB
,
Ooi
C
,
Adler
AS
,
Gollub
J
,
Chen
X
, et al.
Decoding global gene expression programs in liver cancer by noninvasive imaging
.
Nat Biotechnol
.
2007
Jun
;
25
(
6
):
675
80
.
[PubMed]
1087-0156
39.
Aerts
HJ
,
Velazquez
ER
,
Leijenaar
RT
,
Parmar
C
,
Grossmann
P
,
Carvalho
S
, et al.
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
.
Nat Commun
.
2014
Jun
;
5
(
1
):
4006
.
[PubMed]
2041-1723
40.
Vallières
M
,
Kay-Rivest
E
,
Perrin
LJ
,
Liem
X
,
Furstoss
C
,
Aerts
HJ
, et al.
Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer
.
Sci Rep
.
2017
Aug
;
7
(
1
):
10117
.
[PubMed]
2045-2322
41.
Naqa
IE
.
The role of quantitative pet in predicting cancer treatment outcomes
.
Clin Transl Imaging
.
2014
Aug
;
2
(
4
):
305
20
. 2281-5872
42.
Haralick
RM
,
Shanmugam
K
,
Dinstein
I
.
Textural features for image classification
.
IEEE Trans Syst Man Cybern
.
1973
Nov
;
SMC-3
(
6
):
610
21
. 0018-9472
43.
Galloway
MM
.
Texture analysis using gray level run lengths
.
Comput Graph Image Process
.
1975
;
4
(
2
):
172
9
. 0146-664X
44.
G.
Thibault
, B. FERTIL, C. Navarro, S. Pereira, N. Levy, J. Sequeira, and J.-L. Mari. Texture indexes and gray level size zone matrix application to cell nuclei classification. 11
2009
.
45.
Thibault
G
,
Angulo
J
,
Meyer
F
.
Advanced statistical matrices for texture characterization: application to cell classification
.
IEEE Trans Biomed Eng
.
2014
Mar
;
61
(
3
):
630
7
.
[PubMed]
0018-9294
46.
Amadasun
M
,
King
R
.
Textural features corresponding to textural properties
.
IEEE Trans Syst Man Cybern
.
1989
Sep
;
19
(
5
):
1264
74
. 0018-9472
47.
Sun
C
,
Wee
WG
.
Neighboring gray level dependence matrix for texture classification
.
Comput Vis Graph Image Process
.
1983
;
23
(
3
):
341
52
. 0734-189X
48.
Zwanenburg
A
,
Leger
S
,
Vallières
M
,
Löck
S
. Image biomarker standardisation initiative - feature definitions. CoRR, vol. abs/1612.07003,
2016
. [Online]. Available: http://arxiv.org/abs/1612.07003
49.
Lowe
DG
.
Distinctive image features from scale-invariant keypoints
.
Int J Comput Vis
.
2004
Nov
;
60
(
2
):
91
110
. 0920-5691
50.
Freeman
WT
,
Roth
M
.
Orientation histograms for hand gesture recognition.
MERL - Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, Tech. Rep. TR94-03, Dec.
1994
. [Online]. Available: http://www.merl.com/publications/TR94-03/
51.
Guyon
I
,
Elisseeff
A
.
An introduction to variable and feature selection
.
J Mach Learn Res
.
2003
;
3
(
Mar
):
1157
82
.1532-4435
52.
Baum
EB
,
Haussler
D
. What size net gives valid generalization? In: Advances in neural information processing systems,
1989
, pp. 81–90.
53.
Vapnik
V
.
The Nature of Statistical Learning Theory
.
Springer New York
;
2013
.
54.
Hastie
T
,
Tibshirani
R
,
Friedman
J
.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, ser
.
Springer Series in Statistics. Springer New York
;
2013
.
55.
Efron
B
.
Estimating the error rate of a prediction rule: improvement on cross-validation
.
J Am Stat Assoc
.
1983
;
78
(
382
):
316
31
. 0162-1459
56.
Breiman
L
,
Spector
P
.
Submodel selection and evaluation in regression. the x-random case
.
Int Stat Rev
.
1992
;
60
(
3
):
291
319
. 0306-7734
57.
Kohavi
R
.
A study of cross-validation and bootstrap for accuracy estimation and model selection.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, ser. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1995
, pp. 1137–1143. [Online]. Available: http://dl.acm.org/citation.cfm?id=1643031.1643047
58.
Efron
B
,
Tibshirani
R
.
Improvements on cross-validation: The. 632+ bootstrap method
.
J Am Stat Assoc
.
1997
;
92
(
438
):
548
60
.0162-1459
59.
Collins
GS
,
Reitsma
JB
,
Altman
DG
,
Moons
KG
;
C. GS
.
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement
.
Ann Intern Med
.
2015
Jan
;
162
(
1
):
55
63
.
[PubMed]
0003-4819
60.
Wang
D
,
Khosla
A
,
Gargeya
R
,
Irshad
H
,
Beck
AH
. Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718,
2016
.
61.
Antropova
N
,
Huynh
BQ
,
Giger
ML
.
A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets
.
Med Phys
.
2017
Oct
;
44
(
10
):
5162
71
.
[PubMed]
0094-2405
62.
Krizhevsky
A
,
Sutskever
I
,
Hinton
GE
. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems,
2012
, pp. 1097–1105.
63.
Simonyan
K
,
Zisserman
A
. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014
.
64.
Wang
D
,
Otto
C
,
Jain
AK
. Face search at scale: 80 million gallery. arXiv preprint arXiv:1507.07242,
2015
.
65.
Nie
D
,
Trullo
R
,
Lian
J
,
Petitjean
C
,
Ruan
S
,
Wang
Q
, et al.
English Medical image synthesis with context-aware generative adversarial networks.
In: English Medical Image Computing and Computer Assisted Intervention – MICCAI 2017 - 20th International Conference, Proceedings, ser. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10435 LNCS. Springer Verlag,
2017
, pp. 417–425.
66.
Dwork
C
,
Roth
A
, et al.
The algorithmic foundations of differential privacy
.
Foundations and Trends in Theoretical Computer Science
.
2014
;
9
(
3–4
):
211
407
.
67.
Vu
D
,
Slavkovic
A
.
Differential privacy for clinical trial data: Preliminary evaluations.
In:
2009
IEEE International Conference on Data Mining Workshops
,
Dec 2009
, pp.
138
143
.
68.
W. contributors. Differential privacy — wikipedia, the free encyclopedia,”
2018
, [Online; accessed 4-April-2018]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Differential_privacy&oldid=833357507
69.
Lambin
P
,
Zindler
J
,
Vanneste
B
,
van de Voorde
L
,
Jacobs
M
,
Eekers
D
, et al.
Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine
.
Acta Oncol
.
2015
;
54
(
9
):
1289
300
.
[PubMed]
0284-186X
70.
Lambin
P
,
Zindler
J
,
Vanneste
BG
,
De Voorde
LV
,
Eekers
D
,
Compter
I
, et al.
Decision support systems for personalized and participative radiation oncology
.
Adv Drug Deliv Rev
.
2017
Jan
;
109
:
131
53
.
[PubMed]
0169-409X
71.
El Naqa
I
,
Ruan
D
,
Valdes
G
,
Dekker
A
,
McNutt
T
,
Ge
Y
, et al.
Machine learning and modeling: Data, validation, communication challenges
.
Med Phys
.
2018
Oct
;
45
(
10
):
e834
40
.
[PubMed]
0094-2405
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.