Abstract
Objective: The aim of this study was to develop an immunomagnetic/real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay and assess its clinical value for the molecular detection of circulating tumor cells (CTCs) in peripheral blood of pancreatic cancer patients. Methods: The presence of CTCs was evaluated in 34 pancreatic cancer patients before systemic therapy and in 40 healthy controls, through immunomagnetic enrichment, using the antibodies BM7 and VU1D9 [targeting mucin 1 and epithelial cell adhesion molecule (EpCAM), respectively], followed by real-time RT-PCR analysis of the genes KRT19, MUC1, EPCAM, CEACAM5 and BIRC5. Results: The developed assay showed high specificity, as none of the healthy controls were found to be positive for the multimarker gene panel. CTCs were detected in 47.1% of the pancreatic cancer patients before the beginning of systemic treatment. Shorter median progression-free survival (PFS) was observed for patients who had at least one detectable tumor-associated transcript, compared with patients who were CTC negative. Median PFS time was 66.0 days [95% confidence interval (CI) 44.8–87.2] for patients with baseline CTC positivity and 138.0 days (95% CI 124.1–151.9) for CTC-negative patients (p = 0.01, log-rank test). Conclusion: Our results suggest that in addition to the current prognostic methods, CTC analysis represents a potential complementary tool for prediction of outcome in pancreatic cancer patients.