Angiogenesis is considered to be a regulating factor of vascular development and growth for malignant gliomas, including glioblastoma multiforme (GBM) and anaplastic astrocytomas. The mechanism of angiogenesis is primarily mediated by hypoxia through chronic activation of the HIF pathway leading to the production of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. Alternatively, it can be triggered by genetic factors. The VEGF/VEGFR-2 is the predominant angiogenic signalling pathway in malignant gliomas. Currently, anti-angiogenic molecularly targeted therapies, including administration of monoclonal antibodies or tyrosine kinase inhibitors (TKIs), are being increasingly adopted for treating GBMs. This approach is based on the ability of anti-VEGFRs monoclonal antibodies to decrease vascular permeability and perfusion, whereas the use of TKIs is mainly based on their capacity to interfere with cell communication, receptor signaling and growth of tumours. Our aim is to review current knowledge on angiogenesis as a molecular pathogenetic mechanism of malignant gliomas and to critically look at and discuss antiangiogenic molecularly targeted therapies for these brain malignancies. We also highlight areas of future research to pursue.

1.
Argyriou AA, Antonacopoulou A, Iconomou G, Kalofonos HP: Treatment options for malignant gliomas, emphasizing towards new molecularly targeted therapies. Crit Rev Oncol Hematol 2009;69:199–210. DOI: 10.1016/j.critrevonc.2008.05.005
2.
Leon SP, Folkerth RD, Black PM: Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996;77:362–372.
3.
Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353–364.
4.
Semenza GL: Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 2007;102:840–847.
5.
Bergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401–410.
6.
Rong Y, Durden DL, Van Meir EG, Brat DJ: ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 2006;65:529–539.
7.
Jouanneau E: Angiogenesis and gliomas: current issues and development of surrogate markers. Neurosurgery 2008;62:31–52.
8.
Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D: Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2005;15:297–310.
9.
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–4613.
10.
Munaut C, Boniver J, Foidart JM, Deprez M: Macrophage migration inhibitory factor (MIF) expression in human glioblastomas correlates with vascular endothelial growth factor (VEGF) expression. Neuropathol Appl Neurobiol 2002;28:452–460.
11.
Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG: Genetic and hypoxic regulation of angiogenesis in gliomas. J Neurooncol 2004;70:229–243.
12.
Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP: Infrequent methylation of CDKN2A (MTS1/p16) and rare mutation of both CDKN2A and CDKN2B (MTS2/p15) in primary astrocytic tumours. Br J Cancer 1997;75:2–8.
13.
Fueyo J, Gomez-Manzano C, Yung WK, Kyritsis AP: The functional role of tumor suppressor genes in gliomas: clues for future therapeutic strategies. Neurology 1998;51:1250–1255.
14.
Ohgaki H: Genetic pathways to glioblastomas. Neuropathology 2005;25:1–7.
15.
Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992;359:845–848.
16.
Kargiotis O, Rao JS, Kyritsis AP: Mechanisms of angiogenesis in gliomas. J Neurooncol 2006;78:281–293.
17.
Chi A, Norden AD, Wen PY: Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2007;7:1537–1560.
18.
Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, et al: Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999;84:10–18.
19.
Bouloumie A, Schini-Kerth VB, Busse R: Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 1999;41:773–780.
20.
Wang W, Merrill MJ, Borchardt RT: Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am J Physiol 1996;271:C1973–C1980.
21.
Machein MR, Plate KH: VEGF in brain tumors. J Neurooncol 2000;50:109–120.
22.
Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845.
23.
Huang SP, Wu MS, Shun CT, Wang HP, Hsieh CY, Kuo ML, et al: Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. J Biomed Sci 2005;12:229–241.
24.
Rak J, Kerbel RS: Ras regulation of vascular endothelial growth factor and angiogenesis. Methods Enzymol 2001;333:267–283.
25.
Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M: Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996;271:28220–28228.
26.
Loeffler S, Fayard B, Weis J, Weissenberger J: Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 2005;115:202–213.
27.
Tsai JC, Goldman CK, Gillespie GY: Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 1995;82:864–873.
28.
Holmgren L, Glaser A, Pfeifer-Ohlsson S, Ohlsson R: Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 1991;113:749–754.
29.
Ranza E, Facoetti A, Morbini P, et al: Exogenous platelet-derived growth factor (PDGF) induces human astrocytoma cell line proliferation. Anticancer Res 2007;27:2161–2166.
30.
Plate KH, Breier G, Farrell CL, Risau W: Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 1992;67:529–534.
31.
Brockmann MA, Ulbricht U, Grüner K, Fillbrandt R, Westphal M, Lamszus K: Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 2003;52:1391–1399.
32.
Brem S, Tsanaclis AM, Gately S, Gross JL, Herblin WF: Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer 1992;70:2673–2680.
33.
Dunn IF, Heese O, Black PM: Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 2000;50:121–137.
34.
Zagzag D: Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 1995;146:293–309.
35.
Funakoshi H, Nakamura T: Hepatocyte growth factor: from diagnosis to clinical applications. Clin Chim Acta 2003;327:1–23.
36.
Kunkel P, Müller S, Schirmacher P, Stavrou D, Fillbrandt R, Westphal M, Lamszus K: Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro Oncol 2001;3:82–88.
37.
Sengupta S, Gherardi E, Sellers LA, Wood JM, Sasisekharan R, Fan TP: Hepatocyte growth factor/scatter factor can induce angiogenesis independently of vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2003;23:69–75.
38.
Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K: Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res 2003;9:4578–4585.
39.
Feldkamp MM, Lau N, Guha A: Signal transduction pathways and their relevance in human astrocytomas. J Neurooncol 1997;35:223–248.
40.
Nakamura JL: The epidermal growth factor receptor in malignant gliomas: pathogenesis and therapeutic implications. Expert Opin Ther Targets 2007;11:463–472.
41.
Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP, et al: Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 2007;25:2288–2294.
42.
Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG: The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005;118:771–780.
43.
Péoch M, Farion R, Hiou A, Le Bas JF, Pasquier B, Rémy C: Immunohistochemical study of VEGF, angiopoietin 2 and their receptors in the neovascularization following microinjection of C6 glioma cells into rat brain. Anticancer Res 2002;22:2147–2151.
44.
Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K, Koeffler HP: Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 2004;10:2072–2081.
45.
Brat DJ, Bellail AC, Van Meir EG: The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neurooncol 2005;7:122–133.
46.
Choi C, Gillespie GY, Van Wagoner NJ, Benveniste EN: Fas engagement increases expression of interleukin-6 in human glioma cells. J Neurooncol 2002;56:13–19.
47.
Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM: Alpha(m)beta3 and alpha(m)beta5 integrin expression in glioma periphery. Neurosurgery 2001;49:380–309.
48.
Levicar N, Strojnik T, Kos J, Dewey RA, Pilkington GJ, Lah TT: Lysosomal enzymes, catrepsins in brain tumour invasion. J Neurooncol 2002;58:21–32.
49.
Wang M, Tang J, Liu S, Yoshida D, Teramoto A: Expression of cathepsin B and microvascular density increases with higher grade of astrocytomas. J Neurooncol 2005;71:3–7.
50.
Zagzag D, Friedlander DR, Miller DC, Dosik J, Cangiarella J, Kostianovsky M, Cohen H, Grumet M, Greco MA: Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res 1995;55:907–914.
51.
Takano S, Tsuboi K, Matsumura A, Nose T: Anti-vascular endothelial growth factor antibody and nimustine as combined therapy: effects on tumour growth and angiogenesis in human glioblastoma xenografts. Neuro Oncol 2003;5:1–7.
52.
Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K: Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001;61:6624–6628.
53.
Lamszus K, Brockmann MA, Eckerich C, Bohlen P, May C, Mangold U, Fillbrandt R, Westphal M: Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin Cancer Res 2005;11:4934–4940.
54.
Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, et al: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004;6:553–563.
55.
Jain RK: Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 2005;19(suppl 3):7–16.
56.
Goldbrunner RH, Bendszus M, Wood J, et al: PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 2004;55:426–432.
57.
Polyzos A: Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma and various other solid tumors. J Steroid Biochem Mol Biol 2008;108:261–266.
58.
de Boüard S, Herlin P, Christensen JG, Lemoisson E, Gauduchon P, Raymond E, Guillamo JS: Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 2007;9:412–423.
59.
Argyriou A, Giannopoulou E, Dimitrakopoulos F, Kalofonos H: Announcement and preliminary results of the effects of sunitinib and/or lapatinib on U87 glioma cell lines. Ann Oncol 2008;19(suppl 8):58.
60.
Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D, McMahon G, Hallahan DE: SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 2003;63:4009–4016.
61.
Eller JL, Longo SL, Kyle MM, et al: Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery 2005;56:155–162.
62.
Lassman AB, Rossi MR, Raizer JJ, Abrey LE, Lieberman FS, Grefe CN, Lamborn K, Pao W, et al: Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin Cancer Res 2005;11:7841–7850.
63.
Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, Shimada H, Barsky L, et al: alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 2002;98:690–697.
64.
Norden AD, Drappatz J, Wen PY: Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol 2008;7:1152–1160.
65.
Kosmas C, Kalofonos H, Epenetos AA: Monoclonal antibodies. Future potential in cancer chemotherapy. Drugs 1989;38:645–657.
66.
Sathornsumetee S, Rich JN: Antiangiogenic therapy in malignant glioma: promise and challenge. Curr Pharm Des 2007;13:3545–3558.
67.
Omuro AM, Faivre S, Raymond E: Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 2007;6:1909–1919.
68.
Sadones J, Chaskis E, Joosens EJ, et al: A stratified phase II study of cetuximab for the treatment of recurrent glioblastoma multiforme: preliminary results. Proc Am Soc Clin Oncol 2006;24:18S, abstr. 1558.
69.
Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, et al: Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004;22:133–142.
70.
Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D, Scopece L, et al: Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 2007;96:1047–1051.
71.
Krishnan S, Brown PD, Ballman KV, et al: Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: results of North Central Cancer Treatment Group protocol N0177. Int J Radiat Oncol Biol Phys 2006;65:1192–1199.
72.
Prados MD, Lamborn KR, Chang S, et al: Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol 2006;8:67–78.
73.
de Groot JF, Gilbert MR, Aldape K, Hess KR, Hanna TA, Ictech S, Groves MD, et al: Phase II study of carboplatin and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma. J Neurooncol 2008;90:89–97.
74.
Mellinghoff IK, Wang MY, Vivanco I, et al: Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005;353:2012–2024.
75.
Haas-Kogan DA, Prados MD, Tihan T, et al: Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 2005;97:880–887.
76.
Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR: Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 2006;32:74–89.
77.
Kalofonos HP, Pawlikowska TR, Hemingway A, Courtenay-Luck N, Dhokia B, Snook D, Sivolapenko GB, et al: Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 1989;30:1636–1645.
78.
Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007;25:4722–4729.
79.
Bokstein F, Shpigel S, Blumenthal DT: Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 2008;112:2267–2273.
80.
Desjardins A, Reardon DA, Herndon JE 2nd, Marcello J, Quinn JA, Rich JN, Sathornsumetee S, et al: Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. Clin Cancer Res 2008;14:7068–7073.
81.
Lai A, Filka E, McGibbon B, Nghiemphu PL, Graham C, Yong WH, Mischel P, et al: Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 2008;71:1372–1380.
82.
Batchelor TT, Sorensen AG, di Tomaso E, et al: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11:83–95.
83.
Conrad C, Friedman H, Reardon D, et al: A phase I/II trial of single-agent PTK787/ZK222584, a novel oral angiogenesis inhibitor, in patients with recurrent GBM. J Clin Oncol 2004 ASCO Annu Meet Proc 2004;22:abstr. 1512.
84.
Wen PY, Yung WK, Lamborn KR, et al: Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 2006;12:4899–4907.
85.
Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, Frenay M, et al; European Organisation for Research and Treatment of Cancer Brain Tumor Group Study: Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 2008;26:4659–4665.
86.
Desjardins A, Quinn JA, Vredenburgh JJ, et al: Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol 2007;83:53–60.
87.
Koutras AK, Krikelis D, Alexandrou N, Starakis I, Kalofonos HP: Brain metastasis in renal cell cancer responding to sunitinib. Anticancer Res 2007;27:4255–4257.
88.
Semrad TJ, O’Donnell R, Wun T, Chew H, Harvey D, Zhou H, White RH: Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J Neurosurg 2007;106:601–608.
89.
Nghiemphu PL, Green RM, Pope WB, Lai A, Cloughesy TF: Safety of anticoagulation use and bevacizumab in patients with glioma. Neuro Oncol 2008;10:355–360.
90.
Eskens FA, Verweij J: The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 2006;42:3127–3139.
91.
Norden AD, Drappatz J, Wen PY: Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol 2008;7:1152–1160.
92.
Guiu S, Taillibert S, Chinot O, Taillandier L, Honnorat J, Dietrich PY, Maire JP, et al: Bevacizumab/irinotecan. An active treatment for recurrent high grade gliomas: preliminary results of an ANOCEF Multicenter Study. Rev Neurol (Paris) 2008;164:588–594.
93.
Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D, Turnbull DH: Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 2003;49:848–855.
94.
Kaminogo M, Ishimaru H, Morikawa M, Ochi M, Ushijima R, Tani M, Matsuo Y, Kawakubo J, Shibata S: Diagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and point-resolved spatially localised proton spectroscopy of brain. Neuroradiology 2001;43:353–363.
95.
Schaller BJ, Cornelius JF, Sandu N, Buchfelder M: Molecular imaging of brain tumors personal experience and review of the literature. Curr Mol Med 2008;8:711–726.
96.
Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, et al: Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003;9:571–579.
97.
Kang HW, Torres D, Wald L, Weissleder R, Bogdanov AA Jr: Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 2006;86:599–609.
98.
Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC: Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–626.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.