Objectives: The receptor for advanced glycation end products (RAGE) is a newly recognized factor regulating cancer cell invasion and metastasis. Nevertheless, the involvement of RAGE in the development and progression of oral squamous cell carcinomas has not been elucidated. This study investigated the expression of RAGE in ten oral squamous cell carcinoma cell lines including primary and metastatic cell lines and its association with invasion and metastasis. Methods: Reverse transcriptase-polymerase chain reaction, antisense phosphorothioate (S)-oligodeoxynucleotide assay, preparation of antibody, immunohistochemical staining, immunoblot analysis, migration assay, in vitro invasion assay, and wound-healing assay were used. Results: RAGE protein expression of metastatic cancer cells treated with RAGE antisense S-oligodeoxynucleotide was significantly reduced compared to that of sense S-oligodeoxynucleotide-treated cells. The migration assay showed that invasive activity was significantly reduced in metastatic cancer cells treated with RAGE antisense S-oligodeoxynucleotide. Similarly, during invasion assays, numbers of invading cells were also reduced with the addition of RAGE antisense S-oligodeoxynucleotide-treated cells. A wound-healing assay showed that only a few RAGE antisense S-oligodeoxynucleotide-treated cancer cells migrated into the scraped area, whereas sense S-oligodeoxynucleotide-treated cells showed many budding nests in the scraped area of the metastatic cell lines. Immunohistochemically, oral squamous cell carcinoma cells in the tumour mesenchymal border were often immunopositive, whereas basal cells in the normal mucosa were scarcely positive. Conclusions: These results suggest that RAGE expression appears to be closely associated with the invasiveness of oral squamous cell carcinoma and represents a promising candidate for assessing the future therapeutic potential in treating patients with oral carcinoma.

1.
Spiro RH, Alfonso AE, Farr HW, Strong EW: Cervical lymph node metastasis from epidermoid carcinoma of oral cavity and oropharynx. Am J Surg 1974;128:562–567.
2.
Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM: Blockade of RAGE-amphoterin signaling suppresses tumour growth and metastases. Nature 2000;405:354–360.
3.
Miki S, Kasayama S, Miki Y, Nakamura Y, Yamamoto M, Sato B, Kishimoto T: Expression of receptors for advanced glycosylation end products on renal cell carcinoma cells in vitro. Biochem Biophys Res Commun 1993;196:984–989.
4.
Schraml P, Bendik I, Ludwig CU: Differential messenger RNA and protein expression of the receptor for advanced glycosylated end products in normal lung and non-small cell lung carcinoma. Cancer Res 1997;57:3669–3671.
5.
Kuniyasu H, Oue N, Wakikawa A, Shigeishi H, Matsutani N, Kuraoka K, Ito R, Yokozaki H, Yasui W: Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol 2002;196:163–170.
6.
Sugiyama M, Bhawal UK, Dohmen T, Ono S, Miyauchi M, Ishikawa T: Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:594–600.
7.
Sasaki N, Toki S, Chowei H, Saito T, Nakano N, Hayashi Y, Takeuchi M, Makita Z: Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res 2001;888:256–262.
8.
Yasui W, Ayhan A, Kitadai Y, Yokozaki H, Ito H, Tahara E: Increased expression of p34cdc2 and its kinase activity in human gastric and colonic carcinomas. Int J Cancer 1993;53:36–41.
9.
Fidler IJ: Selection of successive tumour lines for metastasis. Nature 1973;242:148–149.
10.
Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991;113:173–185.
11.
Kuniyasu H, Chihara Y, Takahashi T: Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep 2003;10:445–448.
12.
Takada M, Koizumi T, Toyama H, Suzuki Y, Kuroda Y: Differential expression of RAGE in human pancreatic carcinoma cells. Hepatogastroenterology 2001;48:1577–1578.
13.
Fidler IJ: Critical factors in the biology of human cancer metastasis: Twenty-Eighth GHA Clowes Memorial Award Lecture. Cancer Res 1990;50:6130–6138.
14.
Liotta LA: Tumor invasion and metastasis – role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res 1986;46:1–7.
15.
Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E: Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun 1992;189:227–232.
16.
Kuniyasu H, Troncoso P, Johnston D, Bucana CD, Tahara E, Fidler IJ, Pettaway CA: Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers. Clin Cancer Res 2000;6:2295–2308.
17.
Herbst RS, Yano S, Kuniyasu H, Khuri FR, Bucana CD, Guo F, Liu D, Kemp B, Lee JJ, Hong WK, Fidler IJ: Differential expression of E-cadherin and type IV collagenase genes predicts outcome in patients with stage I non-small cell lung carcinoma. Clin Cancer Res 2000;6:790–797.
18.
Kuniyasu H, Ellis LM, Evans DB, Abbruzzese JL, Fenoglio CJ, Bucana CD, Cleary KR, Tahara E, Fidler IJ: Relative expression of E-cadherin and type IV collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma. Clin Cancer Res 1999;5:25–33.
19.
Kitadai Y, Ellis LM, Tucker SL, Greene GF, Bucana CD, Cleary KR, Takahashi Y, Tahara E, Fidler IJ: Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma. Am J Pathol 1996;149:1541–1551.
20.
Hsieh H-L, Schafer BW, Sasaki N, Heizmann CW: Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun 2003;307:375–381.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.