In this review, we focus on new data from basic, translational and clinical research relating to the Epstein-Barr virus (EBV). Beside its well-known tropism for B lymphocytes and epithelial cells, EBV also infects T lymphocytes, monocytes and granulocytes. After primary infection, EBV persists throughout the life span in resting memory B cells, from where it is reactivated upon breakdown of cellular immunity. In the process of neoplastic transformation, the EBV-encoded latent membrane protein 1 (LMP1) oncogene represents the major driving force. LMP1 acts like a constitutively activated receptor of the tumor necrosis factor receptor family and allows the amplification or bypassing of physiological regulatory signals through direct and indirect interactions with proteins of the tumor necrosis factor receptor-associated factor (TRAF) family. TRAF2-mediated NF-ĸB activation, AP-1 induction and JAK3/STAT activation may result in sustained proliferation leading to lymphoma. The ability of LMP1 to suppress germinal center formation and its capacity to mediate its own transcriptional activation shed new light on the pathogenesis of EBV-associated latency type II lymphoproliferations like Hodgkin’s disease and angioimmunoblastic lymphadenopathy. The carboxy terminus of LMP1 is also a reliable marker for individual EBV strain identification and thus offers new possibilities in tracing the molecular events leading to posttransplant lymphoproliferative disorders (PTLDs). Cytotoxic T lymphocytes directed against well-characterized epitopes of EBV latency genes represent an already successful and promising therapeutic approach to EBV-associated lymphomas, in particular PTLDs.

1.
Knecht H, Berger C, Al-Homsi AS, McQuain C, Brousset P: Epstein-Barr virus oncogenesis. Crit Rev Oncol Hematol 1997;26:117–135.
2.
Ambinder RF, Lemas MV, Moore S, Yang J, Fabian D, Krone C: Epstein-Barr virus and lymphoma. Cancer Treat Res 1999;99:27–45.
3.
Imai S, Sugiura M, Oikawa O, Koizumi S, Hirao M, Kimura H, Hayashibara H, Terai N, Tsutsumi H, Oda T, Chiba S, Osato T: Epstein-Barr virus (EBV)-carrying and expressing T-cell lines established from severe chronic active EBV infection. Blood 1996;87:1446–1457.
4.
Groux H, Cottrez F, Montpellier C, Quatannens B, Coll J, Stehelin D, Auriault C: Isolation and characterization of transformed human T-cell lines infected by Epstein-Barr virus. Blood 1997;89:4521–4530.
5.
Kanegane H, Bhatia K, Gutierrez M, Kaneda H, Wada T, Yachie A, Seki H, Arai T, Kagimoto S, Okazaki M, Oh-ishi T, Moghaddam A, Wang F, Tosato G: A syndrome of peripheral blood T-cell infection with Epstein-Barr virus (EBV) followed by EBV-positive T-cell lymphoma. Blood 1998;91:2085–2091.
6.
Montpellier C, Crepieux P, Quatannens B, Delobel B, Croquette MF, Stehelin D, Auriault C, Groux H, Coll J: Homologous T and B cells immortalized in vitro by the Epstein-Barr virus exhibit differential genetical and functional features. Int J Oncol 1997;11:87–96.
7.
Mizuno S, Akashi K, Ohshima K, Iwasaki H, Miyamoto T, Uchida N, Shibuya T, Harada M, Kikuchi M, Niho Y: Interferon-γ prevents apoptosis in Epstein-Barr virus-infected natural killer cell leukemia in an autocrine fashion. Blood 1999;93:3494–3504.
8.
Larochelle B, Flamand L, Gourde P, Beauchamp D, Gosselin J: Epstein-Barr virus infects and induces apoptosis in human neutrophils. Blood 1998;92:291–299.
9.
Savard M, Bélanger C, Tardif M, Gourde P, Flamand L, Gosselin J: Infection of primary human monocytes by Epstein-Barr virus. J Virol 2000;74:2612–2619.
10.
Shimakage M, Kimura M, Yanoma S, Ibe M, Yokota S, Tsujino G, Kozuka T, Dezawa S, Tamura S, Ohshima A, Yutsudo M, Hakura A: Expression of latent and replicative-infection genes of Epstein-Barr virus in macrophage. Arch Virol 1999;144:157–166.
11.
Jones K, Rivera C, Sgadari C, Franklin J, Max EE, Bhatia K, Tosato G: Infection of human endothelial cells with Epstein-Barr virus. J Exp Med 1995;182:1213–1221.
12.
Lindhout E, Lakeman A, Mevissen ML, de Groot C: Functionally active Epstein-Barr virus-transformed follicular dendritic cell-like cell lines. J Exp Med 1994;179:1173–1184.
13.
Selves J, Meggetto F, Brousset P, Voigt JJ, Pradère B, Grasset D, Icart J, Mariamé B, Knecht H, Delsol G: Inflammatory pseudotumor of the liver: Evidence for follicular dendritic reticulum cell proliferation associated with clonal Epstein-Barr virus. Am J Surg Pathol 1996;20:747–753.
14.
Henderson SA, Huen D, Rowe M: Epstein-Barr virus transforming proteins. Semin Virol 1994;5:391–399.
15.
Miyashita EM, Yang B, Lam KM, Crawford DH, Thorley-Lawson DA: A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 1995;80:593–601.
16.
Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA: EBV persistence in memory B cells in vivo. Immunity 1998;9:395–404.
17.
Croce CM: Molecular biology of lymphomas. Semin Oncol 1993;20(suppl 5):31–46.
18.
Kadin ME: Pathology of Hodgkin’s disease. Curr Opin Oncol 1994;6:456–463.
19.
Kanzler H, Küppers R, Hansmann ML, Rajewsky K: Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996;184:1495–1505.
20.
Knecht H, Sahli R, Shaw P, Meyer C, Bachmann E, Odermatt BF, Bachmann F: Detection of Epstein-Barr virus DNA by polymerase chain reaction in lymph node biopsies from patients with angioimmunoblastic lymphadenopathy. Br J Haematol 1990;75:610–614.
21.
Schlegelberger B, Zhang Y, Weber-Matthiesen K, Grote W: Detection of aberrant clones in nearly all cases of angioimmunoblastic lymphadenopathy with dysproteinemia-type T-cell lymphoma by combined interphase and metaphase cytogenetics. Blood 1994;84:2640–2648.
22.
Smith JL, Hodges E, Quin CT, McCarthy KP, Wright DH: Frequent T and B cell oligoclones in histologically and immunophenotypically characterized angioimmunoblastic lymphadenopathy. Am J Pathol 2000;156:661–669.
23.
Horenstein MG, Nador RG, Chadburn A, Hyjek EM, Inghirami G, Knowles DM, Cesarman E: Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8. Blood 1997;90:1186–1191.
24.
Knowles DM: Immunodeficiency-associated lymphoproliferative disorders. Mod Pathol 1999;12:200–217.
25.
Decker LL, Laman LD, Thorley-Lawson DA: Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals. J Virol 1996;70:3286–3289.
26.
Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA: Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol 1997;71:4882–4891.
27.
Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, Kieff E: Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 1995;2:155–166.
28.
Lam KP, Kuhn R, Rajewsky K: In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997;90:1073–1083.
29.
Caldwell RG, Wilson JB, Anderson SJ, Longnecker R: Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 1998;9:405–411.
30.
Babcock GJ, Decker LL, Freeman RB, Thorley-Lawson DA: Epstein-Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 1999;190:567–576.
31.
Prang NS, Hornef MW, Jager M, Wagner HJ, Wolf H, Schwarzmann FM: Lytic replication of Epstein-Barr virus in the peripheral blood: Analysis of viral gene expression in B lymphocytes during infectious mononucleosis and in the normal carrier state. Blood 1997;89:1655–1677.
32.
White CA, Cross SM, Kurilla MG, Kerr BM, Schmidt C, Misko IS, Khanna R, Moss DJ: Recruitment during infectious mononucleosis of CD3+CD4+CD8+ virus-specific cytotoxic T cells which recognise Epstein-Barr virus lytic antigen BHRF1. Virology 1996;219:489–492.
33.
Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB: Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 1998;187:1395–1402.
34.
Kersten MJ, Klein MR, Holwerda AM, Miedema F, van Oers MH: Epstein-Barr virus-specific cytotoxic T cell responses in HIV-1 infection: Different kinetics in patients progressing to opportunistic infection or non-Hodgkin’s lymphoma. J Clin Invest 1997;99:1525–1533.
35.
Wang D, Liebowitz D, Kieff E: An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985;43:831–840.
36.
Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N: Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 1998;95:11963–11968.
37.
Hammarskjöld ML, Simurda MC: Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-κB activity. J Virol 1992;66:6496–6501.
38.
Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E: The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995;80:389–399.
39.
Baeuerle PA: Pro-inflammatory signaling: Last pieces in the NF-κB puzzle? Curr Biol 1998;8:R19–R22.
40.
Cahir McFarland ED, Izumi KM, Mosialos G: Epstein-Barr virus transformation: Involvement of latent membrane protein 1-mediated activation of NF-κB. Oncogene 1999;18:6959–6964.
41.
Arch RH, Gedrich RW, Thompson CB: Tumor necrosis factor receptor-associated factors (TRAFs) – a family of adapter proteins that regulates life and death. Genes Dev 1998;12:2821–2830.
42.
Rothe M, Sarma V, Dixit VM, Goeddel DV: TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 1995;269:1424–1429.
43.
Liu ZG, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 1996;87:565–576.
44.
Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB: Induction of nuclear factor κB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 1997;17:1535–1542.
45.
Sylla BS, Hung SC, Davidson DM, Hatzivassiliou E, Malinin NL, Wallach D, Gilmore TD, Kieff E, Mosialos G: Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-κB through a pathway that includes the NF-κB-inducing kinase and the IκB kinases IKKα and IKKβ. Proc Natl Acad Sci USA 1998;95:10106–10111.
46.
Devergne O, Hatzivassiliou E, Izumi KM, Kaye KM, Kleijnen MF, Kieff E, Mosialos G: Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: Role in NF-κB activation. Mol Cell Biol 1996;16:7098–7108.
47.
Kaye KM, Devergne O, Harada JN, Izumi KM, Yalamanchili R, Kieff E, Mosialos G: Tumor necrosis factor receptor associated factor 2 is a mediator of NF-κB activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Proc Natl Acad Sci USA 1996;93:11085–11090.
48.
Brodeur SR, Cheng G, Baltimore D, Thorley-Lawson DA: Localization of the major NF-κB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs. J Biol Chem 1997;272:19777–19784.
49.
Floettmann JE, Rowe M: Epstein-Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-κB activation. Oncogene 1997;15:1851–1858.
50.
Miller WE, Mosialos G, Kieff E, Raab-Traub N: Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-κB activation. J Virol 1997;71:586–594.
51.
Sandberg M, Hammerschmidt W, Sugden B: Characterization of LMP-1’s association with TRAF1, TRAF2, and TRAF3. J Virol 1997;71:4649–4656.
52.
Izumi KM, Kieff E: The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-κB. Proc Natl Acad Sci USA 1997;94:12592–12597.
53.
Izumi KM, Cahir McFarland E, Ting AT, Riley EA, Seed B, Kieff ED: The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-κB activation. Mol Cell Biol 1999;19:5759–5767.
54.
Asso-Bonnet M, Feuillard J, Ferreira V, Bissières P, Tarantino N, Körner M, Raphael M: Relationship between IκBα constitutive expression, TNFα synthesis, and apoptosis in EBV-infected lymphoblastoid cells. Oncogene 1998;17:1607–1615.
55.
Kaye KM, Izumi KM, Li H, Johannsen E, Davidson D, Longnecker R, Kieff E: An Epstein-Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J Virol 1999;73:10525–10530.
56.
Knecht H, Bachmann E, Brousset P, Sandvej K, Nadal D, Bachmann F, Odermatt BF, Delsol G, Pallesen G: Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin’s disease and identical to those observed in nasopharyngeal carcinoma. Blood 1993;82:2937–2942.
57.
Berger C, McQuain C, Sullivan JL, Nadal D, Quesenberry PJ, Knecht H: The 30-bp deletion variant of Epstein-Barr virus-encoded latent membrane protein-1 prevails in acute infectious mononucleosis. J Infect Dis 1997;176:1370–1373.
58.
Rothenberger S, Bachmann E, Berger C, McQuain C, Odermatt BF, Knecht H: Natural 30 base pair and 69 base pair deletion variants of the LMP1 oncogene do stimulate NF-κB-mediated transcription. Oncogene 1997;14:2123–2126.
59.
Karin M, Liu ZG, Zandi E: AP-1 function and regulation. Curr Opin Cell Biol 1997;9:240–246.
60.
Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W: Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 1997;16:6478–6485.
61.
Eliopoulos AG, Young LS: Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 1998;16:1731–1742.
62.
Eliopoulos AG, Blake SMS, Floettmann JE, Rowe M, Young LS: Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol 1999;73:1023–1035.
63.
Kieser A, Kaiser C, Hammerschmidt W: LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J 1999;18:2511–2521.
64.
Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C, Zeidler R, Scheffer B, Ueffing M, Hammerschmidt W: Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 1999;18:3064–3073.
65.
Rothenberger S, Bachmann E, Knecht H: The latent membrane protein 1 of Epstein-Barr virus mediates its own transcriptional activation. Exp Hematol 1999;27(suppl 1):59.
66.
Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, Kikutani H: Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 1999;286:300–303.
67.
Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P, Pallesen G, Gulley ML, Khan G, O’Grady J, Preciado MV, Knecht H, Chan JKC, Claviez A: Epstein-Barr virus-associated Hodgkin’s disease: Epidemiologic characteristics in international data. Int J Cancer 1997;70:375–382.
68.
Brousset P, Schlaifer D, Meggetto F, Bachmann E, Rothenberger S, Pris J, Delsol G, Knecht H: Persistence of the same viral strain in early and late relapses of Epstein-Barr virus-associated Hodgkin’s disease. Blood 1994;84:2447–2451.
69.
Murray PG, Billingham LJ, Hassan HAT, Flavell JR, Nelson PN, Scott K, Reynolds G, Constandinou CM, Kerr DJ, Devey EC, Crocker J, Young LS: Effect of Epstein-Barr virus infection on response to chemotherapy and survival in Hodgkin’s disease. Blood 1999;94:442–447.
70.
Drexler HG: Recent results on the biology of Hodgkin and Reed-Sternberg cells; in Polliack A (ed): Leukemia & Lymphoma Reviews 3. Chur, Harwood Academic, 1994, pp 169–226.
71.
Haluska FG, Brufsky AM, Canellos GP: The cellular biology of the Reed-Sternberg cell. Blood 1994;84:1005–1019.
72.
Küppers R, Rajewsky K: The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 1998;16:471–493.
73.
Bargou RC, Mapara MY, Zugck C, Daniel PT, Pawlita M, Döhner H, Dörken B: Characterization of a novel Hodgkin cell line, HD-MyZ, with myelomonocytic features mimicking Hodgkin’s disease in severe combined immunodeficient mice. J Exp Med 1993;177:1257–1268.
74.
Trümper LH, Brady G, Bagg A, Gray D, Loke SL, Griesser H, Wagman R, Braziel R, Gascoyne RD, Vicini S, Iscove NN, Cossman J, Mak TW: Single-cell analysis of Hodgkin and Reed-Sternberg cells: Molecular heterogeneity of gene expression and p53 mutations. Blood 1993;11:3097–3115.
75.
Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, Gatter K, Falini B, Delsol G, Lemke H, Schwarting R, Lennert K: The expression of Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: Evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985;66:848–858.
76.
Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H: Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 1992;68:421–427.
77.
Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P, Zagonel V, Pinto A: Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood 1995;85:780–789.
78.
Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD, Scheidereit C, Dörken B: High-level nuclear NF-κB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 1996;87:4340–4347.
79.
Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dörken B: Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 1997;100:2961–2969.
80.
Wood KM, Roff M, Hay RT: Defective IκBα in Hodgkin cell lines with constitutively active NF-κB. Oncogene 1998;16:2131–2139.
81.
Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F, Mathas S, Krappmann D, Scheidereit C, Stein H, Dörken B: Overexpression of IκBα without inhibition of NF-κB activity and mutations in the IκBα gene in Reed-Sternberg cells. Blood 1999;94:3129–3134.
82.
Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dörken B, Scheidereit C: Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 1999;28:943–953.
83.
Mehl AM, Fischer N, Rowe M, Hartmann F, Daus H, Trümper L, Pfreundschuh M, Müller-Lantzsch N, Grasser FA: Isolation and analysis of two strongly transforming isoforms of the Epstein-Barr-Virus (EBV)-encoded latent membrane protein-1 (LMP1) from a single Hodgkin’s lymphoma. Int J Cancer 1998;76:194–200.
84.
Dolcetti R, Quaia M, Gloghini A, De Re V, Zancai P, Cariati R, Babuin L, Cilia AM, Rizzo S, Carbone A, Boiocchi M: Biologically relevant phenotypic changes and enhanced growth properties induced in B lymphocytes by an EBV strain derived from a histologically aggressive Hodgkin’s disease. Int J Cancer 1999;80:240–249.
85.
Messineo C, Jamerson MH, Hunter E, Braziel R, Bagg A, Irving SG, Cossman J: Gene expression by single Reed-Sternberg cells: Pathways of apoptosis and activation. Blood 1998;91:2443–2451.
86.
Dürkop H, Foss HD, Demel G, Klotzbach H, Hahn C, Stein H: Tumor necrosis factor receptor-associated factor 1 is overexpressed in Reed-Sternberg cells of Hodgkin’s disease and Epstein-Barr virus-transformed lymphoid cells. Blood 1999;93:617–623.
87.
Knecht H, McQuain C, Martin J, Rothenberger S, Drexler HG, Berger C, Bachmann E, Kittler ELW, Odermatt BF, Quesenberry PJ: Expression of the LMP1 oncoprotein in the EBV negative Hodgkin’s disease cell line L-428 is associated with Reed-Sternberg cell morphology. Oncogene 1996;13:947–953.
88.
Knecht H, Berger C, McQuain C, Rothenberger S, Bachmann E, Martin J, Esslinger C, Drexler HG, Cai YC, Quesenberry PJ, Odermatt BF: Latent membrane protein 1 associated signaling pathways are important in tumor cells of Epstein-Barr virus negative Hodgkin’s disease. Oncogene 1999;18:7161–7167.
89.
Lennert K, Schwarze EW, Krüger G: Lymphknotenveränderungen durch Virusinfektionen. Verh Dtsch Ges Pathol 1981;65:151–171.
90.
Niedobitek G, Agathanggelou A, Herbst H, Whitehead L, Wright DH, Young LS: Epstein-Barr virus (EBV) infection in infectious mononucleosis: Virus latency, replication and phenotype of EBV-infected cells. J Pathol 1997;182:151–159.
91.
Knecht H, Joske DJL, Eméry-Goodman A, Bachmann E, Bachmann F, Odermatt BF: Expression of human recombination activating genes (RAG-1 and RAG-2) in Hodgkin’s disease. Blood 1992;80:2867–2872.
92.
Srinivas SK, Sixbey JW: Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J Virol 1995;69:8155–8158.
93.
Giachino C, Padovan E, Lanzavecchia A: Re-expression of RAG-1 and RAG-2 genes and evidence for secondary rearrangements in human germinal center B lymphocytes. Eur J Immunol 1998;28:3506–3513.
94.
Zheng B, Han S, Spanopoulou E, Kelsoe G: Immunoglobulin gene hypermutation in germinal centers is independent of the RAG-1 V(D)J recombinase. Immunol Rev 1998;162:133–141.
95.
Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G: Neoteny in lymphocytes: RAG1 and RAG2 expression in germinal center B cells. Science 1996;274:2094–2097.
96.
Sjöblom A, Yang W, Palmqvist L, Jansson A, Rymo L: An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein-Barr virus LMP1 gene promoter. J Virol 1998;72:1365–1376.
97.
Höfelmayr H, Strobl LJ, Stein C, Laux G, Marschall G, Bornkamm GW, Zimber-Strobl U: Activated mouse Notch1 transactivates Epstein-Barr virus nuclear antigen 2-regulated viral promoters. J Virol 1999;73:2770–2780.
98.
Kim SH, Choi EY, Shin YK, Kim TJ, Chung DH, Chang SI, Kim NK, Park SH: Generation of cells with Hodgkin’s and Reed-Sternberg phenotype through downregulation of CD99 (Mic2). Blood 1998;92:4287–4295.
99.
Kim SH, Shin YK, Lee IS, Bae YM, Sohn HW, Suh YH, Ree HJ, Rowe M, Park SH: Viral latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin’s and Reed-Sternberg phenotype. Blood 2000;95:294–300.
100.
Lipford EH, Smith HR, Pittaluga S, Jaffe ES, Steinberg AD, Cossman J: Clonality of angioimmunoblastic lymphadenopathy and implications for its evolution to malignant lymphoma. J Clin Invest 1987;79:637–642.
101.
Knecht H, Martius F, Bachmann E, Hoffman T, Zimmermann DR, Rothenberger S, Sandvej K, Wegmann W, Hurwitz N, Odermatt BF, Kummer H, Pallesen G: A deletion mutant of the LMP1 oncogene of Epstein-Barr virus is associated with evolution of angioimmunoblastic lymphadenopathy into B immunoblastic lymphoma. Leukemia 1995;9:458–465.
102.
Matsue K, Itoh M, Tsukuda K, Kokubo T, Hirose Y: Development of Epstein-Barr virus-associated B cell lymphoma after intensive treatment of patients with angioimmunoblastic lymphadenopathy with dysproteinemia. Int J Hematol 1998;67:319–329.
103.
Khanna R, Burrows SR, Moss DJ, Silins SL: Peptide transporter (TAP-1 and TAP-2)-independent endogenous processing of Epstein-Barr virus (EBV) latent membrane protein 2A: Implications for cytotoxic T-lymphocyte control of EBV-associated malignancies. J Virol 1996;70:5357–5362.
104.
Khanna R, Burrows SR, Nicholls J, Poulsen LM: Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): Evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 1998;28:451–458.
105.
Berger C, van Baarle D, Kersten MJ, Klein MR, Al-Homsi AS, Dunn B, McQuain C, van Oers R, Knecht H: Carboxy terminal variants of Epstein-Barr virus-encoded latent membrane protein 1 during long-term human immunodeficiency virus infection: Reliable markers for individual strain identification. J Infect Dis 1999;179:240–244.
106.
Edwards RH, Seillier-Moiseiwitsch F, Raab-Traub N: Signature amino acid changes in latent membrane protein 1 distinguish Epstein-Barr virus strains. Virology 1999;261:79–95.
107.
Walling DM, Shebib N, Weaver SC, Nichols CM, Flaitz CM, Webster-Cyriaque J: The molecular epidemiology and evolution of Epstein-Barr virus: Sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis 1999;179:763–774.
108.
Meggetto F, Brousset P, Selves J, Delsol G, Mariamé B: Reed-Sternberg cells and ‘bystander’ lymphocytes in lymph nodes affected by Hodgkin’s disease are infected with different strains of Epstein-Barr virus. J Virol 1997;71:2547–2549.
109.
Santon A, Martin C, Manzanal AI, Preciado MV, Bellas C: Paediatric Hodgkin’s disease in Spain: Association with Epstein-Barr virus strains carrying latent membrane protein-1 oncogene deletions and high frequency of dual infections. Br J Haematol 1998;103:129–136.
110.
Chiang AK, Wong KY, Liang AC, Sirvastava G: Comparative analysis of Epstein-Barr virus gene polymorphisms in nasal T/NK-cell lymphomas and normal nasal tissues: Implications on virus strain selection in malignancy. Int J Cancer 1999;80:356–364.
111.
Brooks JM, Croom-Carter DSG, Leese AM, Tierney RJ, Habeshaw G, Rickinson AB: Cytotoxic T-lymphocyte responses to a polymorphic Epstein-Barr virus epitope identify healthy carriers with coresident viral strains. J Virol 2000;74:1801–1809.
112.
Sirvastava G, Wong KY, Chiang AKS, Lam KY, Tao Q: Coinfection of multiple strains of Epstein-Barr virus in immunocompetent normal individuals: Reassessment of the viral carrier state. Blood 2000;95:2443–2445.
113.
Kershaw GR, Berger C, McQuain C, Al-Homsi AS, Pihan G, Quesenberry PJ, Woda BA, Knecht H: Selective outgrowth of a posttransplant B-immunoblastic lymphoma expressing a latent membrane protein-1 deletion variant. Transplantation 1997;64:1079–1081.
114.
Schäfer H, Berger C, Aepinus C, Hebart H, Beck R, Kaiserling E, Kanz L, Einsele H, Knecht H: Molecular pathogenesis of Epstein-Barr virus associated post-transplant lymphomas: New insights through latent membrane protein 1 fingerprinting. Transplantation, in press.
115.
Rothenberger S, Bachmann E, Knecht H: Molecular and functional analysis of the Epstein-Barr virus LMP1 oncogene promoter in lymphoproliferative diseases. Exp Hematol 1997;25:1326–1332.
116.
Izumi KM, Cahir McFarland E, Riley EA, Rizzo D, Chen Y, Kieff E: The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol 1999;73:9908–9916.
117.
Leblond V, Davi F, Charlotte F, Dorent R, Bitker MO, Sutton L, Gandjbakhch I, Binet JL, Raphael M: Posttransplant lymphoproliferative disorders not associated with Epstein-Barr virus: A distinct entity? J Clin Oncol 1998;16:2052–2059.
118.
Micallef INM, Chhanabhai M, Gascoyne RD, Sheperd JD, Fung HC, Nantel SH, Toze CL, Klingemann HG, Sutherland HJ, Hogge DE, Nevill TJ, Le A, Barnett MJ: Lymphoproliferative disorders following allogeneic bone marrow transplantation: The Vancouver experience. Bone Marrow Transplant 1998;22:981–987.
119.
Heslop HE, Ng CYC, Li C, Smith CA, Loftin SK, Krance RA, Brenner MK, Rooney CM: Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996;2:551–555.
120.
Fischer A, Blanche S, Le Bidois J, Bordigoni P, Garnier JL, Niaudet P, Morinet F, LeDeist F, Fischer AM, Griscelli C, Hirn M: Anti-B-cell monoclonal antibodies in the treatment of severe B-cell lymphoproliferative syndrome following bone marrow and organ transplantation. N Engl J Med 1991;324:1451–1456.
121.
Kuehnle I, Huls MH, Liu Z, Semmelmann M, Krance RA, Brenner MK, Rooney CM, Heslop HE: CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hematopoietic stem-cell transplantation. Blood 2000;95:1502–1505.
122.
Faye A, Van Den Abeele T, Peuchmaur M, Mathieu-Boué A, Vilmer E: Anti-CD20 monoclonal antibody for post-transplant lymphoproliferative disorders. Lancet 1998;352:1285.
123.
Senderowicz AM, Vitetta E, Headlee D, Ghetie V, Uhr JW, Figg WD, Lush RM, Stetler-Stevenson M, Kershaw G, Kingma DW, Jaffe ES, Sausville EA: Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med 1997;126:882–885.
124.
Hanto DW, Gajl-Peczalska KJ, Frizzera G, Arthur DC, Balfour HH Jr, McClain K, Simmons RL, Najarian JS: Epstein-Barr virus (EBV) induced polyclonal and monoclonal B-cell lymphoproliferative diseases occurring after renal transplantation. Clinical, pathologic, and virologic findings and implications for therapy. Ann Surg 1983;198:356–359.
125.
Fong IW, Ho J, Toy C, Lo B, Fong MW: Value of long-term administration of acyclovir and similar agents for protecting against AIDS-related lymphoma: Case-control and historical cohort studies. Clin Infect Dis 2000;30:757–761.
126.
Papadopoulos EB, Ladanyi M, Emanuel D, MacKinnon S, Boulard F, Carabasi MH, Castro-Malaspina H, Childs BH, Gillio AP, Small TN, Young YW, Kernan NA, O’Reilly RJ: Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–1191.
127.
Aguilar LK, Rooney CM, Heslop HE: Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation. Curr Opin Oncol 1999;11:96–101.
128.
Rooney CM, Smith CA, Ng CYC, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE: Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998;92:1549–1555.
129.
Gustafsson A, Levitsky V, Zou JZ, Frisan T, Dallanis T, Ljungman P, Ringden O, Winiarski J, Ernberg I, Masucci MG: Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: Prophylactic infusion of EBV-specific cytotoxic T cells. Blood 2000;95:807–814.
130.
Levitsky V, de Campos-Lima PO, Frisan T, Masucci MG: The clonal composition of a peptide-specific oligoclonal CTL repertoire selected in response to persistent EBV infection is stable over time. J Immunol 1998;161:594–601.
131.
Roskrow MA, Suzuki N, Gan YJ, Sixbey JW, Ng CYC, Kimbrough S, Hudson M, Brenner MK, Heslop HE, Rooney CM: Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin’s disease. Blood 1998;91:2925–2934.
132.
Rickinson AB, Moss DJ: Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997;15:405–431.
133.
Bogedain C, Wolf H, Modrow S, Stuber G, Jilg W: Specific cytotoxic T lymphocytes recognize the immediate-early transactivator Zta of Epstein-Barr virus. J Virol 1995;69:4872–4879.
134.
Steven NM, Annels NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB: Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med 1997;185:1605–1617.
135.
Redchenko IV, Rickinson AB: Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells. J Virol 1999;73:334–342.
136.
Herr W, Ranieri E, Olson W, Zarour H, Gesualdo L, Sorkus WJ: Mature dendritic cells pulsed with freeze-thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4+ and CD8+ T lymphocyte responses. Blood 2000;96:1857–1864.
137.
Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG: Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 1997;94:12616–12621.
138.
Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM: Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 2000;191:1649–1660.
139.
Hebart H, Kanz L, Jahn G, Einsele H: Management of cytomegalovirus infection after solid-organ or stem-cell transplantation. Current guidelines and future prospects. Drugs 1998;55:59–72.
140.
Sun Q, Pollok KE, Burton RL, Dai LJ, Britt W, Emanuel DJ, Lucas KG: Simultaneous ex vivo expansion of cytomegalovirus and Epstein-Barr virus-specific cytotoxic T lymphocytes using B-lymphoblastoid cell lines expressing cytomegalovirus pp65. Blood 1999;94:3242–3250.
141.
Sun Q, Burton RL, Dai LJ, Britt W, Lucas KG: B lymphoblastoid cell lines as efficient APC to elicit CD8+ T cell responses against a cytomegalovirus antigen. J Immunol 2000;165:4105–4111.
142.
Kenney JLK, Guinness ME, Curiel T, Lacy J: Antisense to the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and Bcl-2 expression and promotes apoptosis in EBV-immortalized B cells. Blood 1998;92:1721–1727.
143.
Piche A, Kasono K, Johanning F, Curiel TJ, Curiel DT: Phenotypic knock-out of the latent membrane protein 1 of Epstein-Barr virus by an intracellular single-chain antibody. Gene Ther 1998;5:1171–1179
144.
Lo YM, Chan LY, Chan AT, Leung SF, Lo KW, Zhang J, Lee JC, Hjelm NM, Johnson PJ, Huang DP: Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 1999;59:5452–5455.
145.
Niesters HGM, van Esser J, Fries E, Wolthers KC, Cornelissen J, Osterhaus ADME: Development of a real-time quantitative assay for detection of Epstein-Barr virus. J Clin Microbiol 2000;38:712–715.
146.
Berger C, Day P, Meier G, Zingg W, Bossart W, Nadal D: Dynamics of Epstein-Barr virus (EBV) DNA levels in serum during EBV-associated disease. J Med Virol, in press.
147.
Qu L, Green M, Webber S, Reyes J, Ellis D, Rowe D: Epstein-Barr virus gene expression in the peripheral blood of transplant recipients with persistent circulating virus loads. J Infect Dis 2000;182:1013–1021.
148.
Vajro P, Lucariello S, Migliaro F, Sokal E, Gridelli B, Vegnente A, Iorio R, Smets F, Quinto I, Scala G: Predictive value of Epstein-Barr virus genome copy number and BZLF1 expression in blood lymphocytes of transplant recipients at risk for lymphoproliferative disease. J Infect Dis 2000;181:2050–2054.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.