In the past several years, significant progress in many aspects of pulmonary fibrosis research has been made. Among them, the finding that a variety of cytokines play important roles in the complex process appears most intriguing. These cytokines include at least transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), platelet-derived growth factor, fibroblast growth factors, (TGF-α), interleukin-1, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α. These cytokines have been demonstrated to be produced at the sites of active fibrosis where they appear to be expressed by activated inflammatory cells, such as macrophages and eosinophils. More interestingly, other noninflammatory lung cells including mesenchymal cells, such as myofibroblasts, and epithelial cells, have been found to be significant sources as well, albeit in most instances at somewhat different time points than those by inflammatory cells. Study of the individual cytokines in vitro has revealed a variety of potential roles for these cytokines in the regulation of the fibrotic process in vivo, including chemoattractant, mitogenic activities for fibroblasts, stimulation of extracellular matrix and α-smooth muscle actin gene expression, alteration of the contractile phenotype of fibroblasts and regulation of diverse functions of lung inflammatory and epithelial cells which can further impact on the fibrotic process by autocrine and paracrine mechanisms. Of these cytokines, it appears that TGF-β is probably the most important cytokine in terms of the direct stimulation of lung matrix expression which typifies fibrosis. Recently however, there is accumulating evidence to indicate that the situation is much more complex than any one single cytokine being solely responsible for the fibrotic response. The concept of complex lung cytokine networks, orchestrated by a few key cytokines, such as TNF-α, being responsible for this response has received strong support from recent studies. This means that it is the balance of positive (profibrogenic) and negative (antifibrogenic) forces generated from interaction among the various cytokines constituting these networks, which may finally determine the outcome of lung injury and inflammation. The importance of these cytokines also suggests new potential targets for designing new therapies for progressive pulmonary fibrosis, and perhaps their utility in prognostication as well.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.