While there have been numerous reports concerning the possible role(s) of gangliosides in neuronal development and their efficacy, or lack thereof, as possible therapeutic agents for the treatment of neuronal injury, the molecular mechanisms by which they induce specific cellular effects are not well understood. This review presents evidence for the existence of cell surface molecules able to adhere to the oligosaccharide portion of specific gangliosides and describes methods employed for their study. The identification of such cell surface molecules permits the hypothesis that the binding of the oligosaccharide portion of the ganglioside by its cell surface receptor is responsible for initiating the intracellular reactions that lead to modified cell behavior.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.