Although the interactions of several natural bastadins with the RyR1 isoform of the ryanodine receptor in sarcoplasmic reticulum has been described, their structure-dependent interference with the RyR2 isoform, mainly expressed in cardiac muscle and brain neurons, has not been studied. In this work, we examined calcium transients induced by natural bastadin 10 and several synthetic bastadins in cultured cerebellar granule cells known to contain RyR2. The fluorescent calcium indicator fluo-3 and confocal microscopy were used to evaluate changes in the intracellular Ca2+ concentration (Cai), and the involvement of ryanodine receptors was assessed using pharmacological tools. Our results demonstrate that apart from the inactive BAST218F6 (a bisdebromo analogue of bastadin 10), synthetic bastadin 5, and synthetic analogues BAST217B, BAST240 and BAST268 (at concentrations >20 µM) increased Cai in a concentration-dependent, ryanodine- and FK-506-sensitive way, with a potency significantly exceeding that of 20 mM caffeine. Moreover, the same active bastadins at a concentration of 5 µM in the presence of ryanodine prevented a thapsigargin-induced increase in Cai. These results indicate that bastadins, acting in a structure-dependent manner, modify the activity of RyR2 in primary neuronal culture and provide new information about structure-related pharmacological properties of bastadins.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.