Abstract
The responses of liver glucocorticoid receptor (GR) and genes coding for a glucocorticoid-inducible tyrosine aminotransferase (TAT) and two acute-phase proteins (APP) [α2-macroglobulin (α2-M) and γ-fibrinogen (Fb)] to changes in glucocorticoid (GC) and proinflammatory (AP) cytokine contents have been examined in rats after single or combined treatments with turpentine oil, dexamethasone (Dex) and adrenalectomy. Activation of two APP genes in turpentine-induced inflammation was accompanied by an increase in the level of GR mRNA and a preferential translocation of GR-GC complexes to the nucleoplasm, while the expression of TAT remained unaltered. Dex alone caused a decrease in the levels of GR and Fb mRNAs, activation of TAT and α2-M genes, a decrease in the affinity of hormone binding sites and redistribution of translocated GR-Dex complexes within the nuclei. Inflammation potentiated the effect which Dex alone exerted on the GR content and the number of GR binding sites but counteracted its influence on the affinity of GR binding sites and nuclear distribution of GR-Dex complexes. Adrenalectomy promoted a fall in TAT mRNA, no changes in the GR and Fb mRNA, a decrease in the affinity of GR hormone binding sites and redistribution of GR-hormone complexes within the nuclei. The AP cytokines released in response to inflammation exerted a counteracting effect on the adrenalectomy-induced changes in the affinity of hormone binding sites and nuclear distribution of GR-hormone complexes. They potentiated a fall of TAT mRNA but promoted full expression of the Fb gene. These results argue strongly for the influence of AP cytokines on the functional state of the GR and GC signaling pathways.