Introduction: Activation of the inflammatory response system is involved in the pathogenesis of generalized anxiety disorder (GAD). The purpose of this study was to identify and characterize inflammatory biomarkers in the diagnosis of GAD based on machine learning algorithms. Methods: The evaluation of peripheral immune parameters and lymphocyte subsets was performed on patients with GAD. Multivariable linear regression was used to explore the association between lymphocyte subsets and the severity of GAD. Receiver operating characteristic (ROC) analysis was used to determine the predictive value of these immunological parameters for GAD. Machine learning technology was applied to classify the collected data from patients in the GAD and healthy control groups. Results: Of the 340 patients enrolled, 171 were GAD patients, and 169 were non-GAD patients as healthy control. The levels of neutrophil, monocytes, and systemic immune-inflammation index (SII) were significantly elevated in GAD patients (p < 0.01), and the count and proportion of immune cells, including CD3+CD4+ T cells, CD3+CD8+ T cells, CD19+ B cells, and CD3-CD16+CD56+ NK cells (p < 0.001), have undergone large changes. The classification analysis conducted by machine learning using a weighted ensemble-L2 algorithm demonstrated an accuracy of 95.00 ± 2.04% in assessing the predictive value of these lymphocyte subsets in GAD. In addition, the feature importance analysis score is 0.255, which was much more predictive of GAD severity than for other lymphocyte subsets. Conclusion: In the presented work, we show the level of lymphocyte subsets altered in GAD. Lymphocyte subsets, specifically CD3+CD4+ T %, can serve as neuroinflammatory biomarkers for GAD diagnostics. Furthermore, the application of machine learning offers a highly efficient approach for investigating neuroinflammatory biomarkers and predicting GAD. Our research has provided novel insights into the involvement of cellular immunity in GAD and highlighted the potential predictive value and therapeutic targets of lymphocyte subsets in this disorder.

1.
First
MB
.
Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility
.
J Nerv Ment Dis
.
2013
;
201
(
9
):
727
9
.
2.
DeMartini
J
,
Patel
G
,
Fancher
TL
.
Generalized anxiety disorder
.
Ann Intern Med
.
2019
;
170
(
7
):
Itc49
64
.
3.
Yu
W
,
Singh
SS
,
Calhoun
S
,
Zhang
H
,
Zhao
X
,
Yang
F
.
Generalized anxiety disorder in urban China: prevalence, awareness, and disease burden
.
J Affect Disord
.
2018
;
234
:
89
96
.
4.
Ninan
PT
.
Generalized anxiety disorder: diagnosis, neurobiology, and treatment
.
Psychopharmacol Bull
.
2001
;
35
(
1
):
65
76
.
5.
Kessler
RC
,
Wang
PS
.
The descriptive epidemiology of commonly occurring mental disorders in the United States
.
Annu Rev Public Health
.
2008
;
29
:
115
29
.
6.
Kanwar
A
,
Malik
S
,
Prokop
LJ
,
Sim
LA
,
Feldstein
D
,
Wang
Z
, et al
.
The association between anxiety disorders and suicidal behaviors: a systematic review and meta-analysis
.
Depress Anxiety
.
2013
;
30
(
10
):
917
29
.
7.
Kogan
CS
,
Stein
DJ
,
Maj
M
,
First
MB
,
Emmelkamp
PM
,
Reed
GM
.
The classification of anxiety and fear-related disorders in the ICD-11
.
Depress Anxiety
.
2016
;
33
(
12
):
1141
54
.
8.
Qi
X
,
Xu
W
,
Li
G
.
Neuroimaging study of brain functional differences in generalized anxiety disorder and depressive disorder
.
Brain Sci
.
2023
;
13
(
9
):
1282
.
9.
Teferra
BG
,
Rose
J
.
Predicting generalized anxiety disorder from impromptu speech transcripts using context-aware transformer-based neural networks: model evaluation study
.
JMIR Ment Health
.
2023
;
10
:
e44325
.
10.
Graham
AK
,
Greene
CJ
,
Kwasny
MJ
,
Kaiser
SM
,
Lieponis
P
,
Powell
T
, et al
.
Coached mobile app platform for the treatment of depression and anxiety among primary care patients: a randomized clinical trial
.
JAMA psychiatry
.
2020
;
77
(
9
):
906
14
.
11.
Salim
S
,
Chugh
G
,
Asghar
M
.
Inflammation in anxiety
.
Adv Protein Chem Struct Biol
.
2012
;
88
:
1
25
.
12.
Heneka
MT
,
Kummer
MP
,
Latz
E
.
Innate immune activation in neurodegenerative disease
.
Nat Rev Immunol
.
2014
;
14
(
7
):
463
77
.
13.
Hemmer
B
,
Kerschensteiner
M
,
Korn
T
.
Role of the innate and adaptive immune responses in the course of multiple sclerosis
.
Lancet Neurol
.
2015
;
14
(
4
):
406
19
.
14.
Nøst
TH
,
Alcala
K
,
Urbarova
I
,
Byrne
KS
,
Guida
F
,
Sandanger
TM
, et al
.
Systemic inflammation markers and cancer incidence in the UK Biobank
.
Eur J Epidemiol
.
2021
;
36
(
8
):
841
8
.
15.
Suzuki
H
,
Savitz
J
,
Kent Teague
T
,
Gandhapudi
SK
,
Tan
C
,
Misaki
M
, et al
.
Altered populations of natural killer cells, cytotoxic T lymphocytes, and regulatory T cells in major depressive disorder: association with sleep disturbance
.
Brain Behav Immun
.
2017
;
66
:
193
200
.
16.
Grosse
L
,
Carvalho
LA
,
Birkenhager
TK
,
Hoogendijk
WJ
,
Kushner
SA
,
Drexhage
HA
, et al
.
Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy
.
Psychopharmacology
.
2016
;
233
(
9
):
1679
88
.
17.
Su
L
,
Shuai
Y
,
Mou
S
,
Shen
Y
,
Shen
X
,
Shen
Z
, et al
.
Development and validation of a nomogram based on lymphocyte subsets to distinguish bipolar depression from major depressive disorder
.
Front Psychiatry
.
2022
;
13
:
1017888
.
18.
Koh
KB
,
Lee
BK
.
Reduced lymphocyte proliferation and interleukin-2 production in anxiety disorders
.
Psychosom Med
.
1998
;
60
(
4
):
479
83
.
19.
Silveira
ÉDM
Jr
,
Passos
IC
,
Scott
J
,
Bristot
G
,
Scotton
E
,
Teixeira Mendes
LS
, et al
.
Decoding rumination: a machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders
.
J Psychiatr Res
.
2020
;
121
:
207
13
.
20.
Librenza-Garcia
D
,
Kotzian
BJ
,
Yang
J
,
Mwangi
B
,
Cao
B
,
Pereira Lima
LN
, et al
.
The impact of machine learning techniques in the study of bipolar disorder: a systematic review
.
Neurosci Biobehav Rev
.
2017
;
80
:
538
54
.
21.
Passos
IC
,
Mwangi
B
,
Kapczinski
F
.
Big data analytics and machine learning: 2015 and beyond
.
Lancet Psychiatr
.
2016
;
3
(
1
):
13
5
.
22.
Bharti
R
,
Khamparia
A
,
Shabaz
M
,
Dhiman
G
,
Pande
S
,
Singh
P
.
Prediction of heart disease using a combination of machine learning and deep learning
.
Comput Intell Neurosci
.
2021
;
2021
:
8387680
.
23.
Hofer
IS
,
Lee
C
,
Gabel
E
,
Baldi
P
,
Cannesson
M
.
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
.
NPJ Digit Med
.
2020
;
3
:
58
.
24.
Churpek
MM
,
Yuen
TC
,
Winslow
C
,
Meltzer
DO
,
Kattan
MW
,
Edelson
DP
.
Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
.
Crit Care Med
.
2016
;
44
(
2
):
368
74
.
25.
Shen
Z
,
Cui
L
,
Mou
S
,
Ren
L
,
Yuan
Y
,
Shen
X
, et al
.
Combining S100B and cytokines as neuro-inflammatory biomarkers for diagnosing generalized anxiety disorder: a proof-of-concept study based on machine learning
.
Front Psychiatry
.
2022
;
13
:
881241
.
26.
Fernandes
BS
,
Karmakar
C
,
Tamouza
R
,
Tran
T
,
Yearwood
J
,
Hamdani
N
, et al
.
Precision psychiatry with immunological and cognitive biomarkers: a multi-domain prediction for the diagnosis of bipolar disorder or schizophrenia using machine learning
.
Transl Psychiatry
.
2020
;
10
(
1
):
162
.
27.
Ke
PF
,
Xiong
DS
,
Li
JH
,
Pan
ZL
,
Zhou
J
,
Li
SJ
, et al
.
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
.
Sci Rep
.
2021
;
11
(
1
):
14636
.
28.
Thompson
E
.
Hamilton rating scale for anxiety (HAM-A)
.
Occup Med
.
2015
;
65
(
7
):
601
.
29.
Marazziti
D
,
Torrigiani
S
,
Carbone
MG
,
Mucci
F
,
Flamini
W
,
Ivaldi
T
, et al
.
Neutrophil/lymphocyte, platelet/lymphocyte, and monocyte/lymphocyte ratios in mood disorders
.
Curr Med Chem
.
2022
;
29
(
36
):
5758
81
.
30.
Motamed
N
,
Sohrabi
M
,
Ajdarkosh
H
,
Hemmasi
G
,
Maadi
M
,
Sayeedian
FS
, et al
.
Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease
.
World J Gastroenterol
.
2016
;
22
(
10
):
3023
30
.
31.
Uguz
F
,
Akman
C
,
Kucuksarac
S
,
Tufekci
O
.
Anti-tumor necrosis factor-alpha therapy is associated with less frequent mood and anxiety disorders in patients with rheumatoid arthritis
.
Psychiatry Clin Neurosci
.
2009
;
63
(
1
):
50
5
.
32.
Gray
SM
,
Bloch
MH
.
Systematic review of proinflammatory cytokines in obsessive-compulsive disorder
.
Curr Psychiatry Rep
.
2012
;
14
(
3
):
220
8
.
33.
Passos
IC
,
Vasconcelos-Moreno
MP
,
Costa
LG
,
Kunz
M
,
Brietzke
E
,
Quevedo
J
, et al
.
Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression
.
Lancet Psychiatr
.
2015
;
2
(
11
):
1002
12
.
34.
Costello
H
,
Gould
RL
,
Abrol
E
,
Howard
R
.
Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder
.
BMJ open
.
2019
;
9
(
7
):
e027925
.
35.
Hou
R
,
Garner
M
,
Holmes
C
,
Osmond
C
,
Teeling
J
,
Lau
L
, et al
.
Peripheral inflammatory cytokines and immune balance in Generalised Anxiety Disorder: case-controlled study
.
Brain Behav Immun
.
2017
;
62
:
212
8
.
36.
Xia
Y
,
Liu
A
,
Li
W
,
Liu
Y
,
Zhang
G
,
Ye
S
, et al
.
Reference range of naïve T and T memory lymphocyte subsets in peripheral blood of healthy adult
.
Clin Exp Immunol
.
2022
;
207
(
2
):
208
17
.
37.
Luo
OJ
,
Lei
W
,
Zhu
G
,
Ren
Z
,
Xu
Y
,
Xiao
C
, et al
.
Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty
.
Nat Aging
.
2022
;
2
(
4
):
348
64
.
38.
Tang
Z
,
Ye
G
,
Chen
X
,
Pan
M
,
Fu
J
,
Fu
T
, et al
.
Peripheral proinflammatory cytokines in Chinese patients with generalised anxiety disorder
.
J Affect Disord
.
2018
;
225
:
593
8
.
39.
Jia
Z
,
Ren
Z
,
Ye
D
,
Li
J
,
Xu
Y
,
Liu
H
, et al
.
Immune-ageing evaluation of peripheral T and NK lymphocyte subsets in Chinese healthy adults
.
Phenomics
.
2023
;
3
(
4
):
360
74
.
40.
Poli
A
,
Michel
T
,
Thérésine
M
,
Andrès
E
,
Hentges
F
,
Zimmer
J
.
CD56bright natural killer (NK) cells: an important NK cell subset
.
Immunology
.
2009
;
126
(
4
):
458
65
.
41.
McGuire
JL
,
Kempen
JH
,
Localio
R
,
Ellenberg
JH
,
Douglas
SD
.
Immune markers predictive of neuropsychiatric symptoms in HIV-infected youth
.
Clin Vaccin Immunol
.
2015
;
22
(
1
):
27
36
.
42.
Shi
FD
,
Ljunggren
HG
,
La Cava
A
,
Van Kaer
L
.
Organ-specific features of natural killer cells
.
Nat Rev Immunol
.
2011
;
11
(
10
):
658
71
.
43.
Feng
W
,
Zhang
Y
,
Ding
S
,
Chen
S
,
Wang
T
,
Wang
Z
, et al
.
B lymphocytes ameliorate Alzheimer’s disease-like neuropathology via interleukin-35
.
Brain Behav Immun
.
2023
;
108
:
16
31
.
44.
Castro-Figueroa
EM
,
Acevedo
KI
,
Peña-Vargas
CI
,
Torres-Blasco
N
,
Flores
I
,
Colón-Echevarria
CB
, et al
.
Depression, anxiety, and social environmental adversity as potential modulators of the immune tumor microenvironment in breast cancer patients
.
Med Sci
.
2021
;
9
(
2
):
46
.
45.
Zou
Z
,
Zhou
B
,
Huang
Y
,
Wang
J
,
Min
W
,
Li
T
.
Differences in cytokines between patients with generalised anxiety disorder and panic disorder
.
J Psychosom Res
.
2020
;
133
:
109975
.
46.
Klein
SL
,
Flanagan
KL
.
Sex differences in immune responses
.
Nat Rev Immunol
.
2016
;
16
(
10
):
626
38
.
47.
Koppe
G
,
Meyer-Lindenberg
A
,
Durstewitz
D
.
Deep learning for small and big data in psychiatry
.
Neuropsychopharmacology
.
2021
;
46
(
1
):
176
90
.
48.
Durstewitz
D
,
Koppe
G
,
Meyer-Lindenberg
A
.
Deep neural networks in psychiatry
.
Mol Psychiatry
.
2019
;
24
(
11
):
1583
98
.
49.
Chen
ZS
,
Kulkarni
PP
,
Galatzer-Levy
IR
,
Bigio
B
,
Nasca
C
,
Zhang
Y
.
Modern views of machine learning for precision psychiatry
.
Patterns
.
2022
;
3
(
11
):
100602
.
50.
Hossain
E
,
Rana
R
,
Higgins
N
,
Soar
J
,
Barua
PD
,
Pisani
AR
, et al
.
Natural Language processing in electronic health records in relation to healthcare decision-making: a systematic review
.
Comput Biol Med
.
2023
;
155
:
106649
.
51.
Wu
Z
,
Liu
Z
,
Jiang
Z
,
Fu
X
,
Deng
Q
,
Palaniyappan
L
, et al
.
Overprotection and overcontrol in childhood: an evaluation on reliability and validity of 33-item expanded Childhood Trauma Questionnaire (CTQ-33), Chinese version
.
Asian J Psychiatr
.
2022
;
68
:
102962
.
52.
Şar
V
,
Necef
I
,
Mutluer
T
,
Fatih
P
,
Türk-Kurtça
T
.
A revised and expanded version of the Turkish childhood trauma questionnaire (CTQ-33): overprotection-overcontrol as additional factor
.
J Trauma and Dissociation
.
2021
;
22
(
1
):
35
51
.
You do not currently have access to this content.